Symmetric polynomials over finite fields

Botond Miklósi Eötvös Loránd University

Abstract: Consider the action of the symmetric group S_n on the *n*-dimensional vector space over the finite field \mathbb{F}_q of q elements, where q stands for a prime power p^k . We have an induced action on $\mathbb{F}_q[x_1, \ldots, x_n]$ the coordinate ring of \mathbb{F}_q^n . Kemper, Lopatin and Reimers proved that the elementary symmetric polynomials of degree 2k form a separating set of minimal size in the invariant ring over the 2-element finite field. Based on their paper we have managed to exploit this result: over an arbitrary finite field \mathbb{F}_q the set of elementary symmetric polynomials of degree jp^k (with $j \in \{0, \ldots, q-1\}, k \in \mathbb{Z}_{>0}$ and jp^k smaller or equal to n) form a separating set. Moreover, this separating set is not far from being minimal when q = p and the dimension is large compared to p. In the talk I will present the main ideas and the outline of the proof.