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Let g be a simple Lie algebra over C.

Definition

An element x ∈ g is said to be nilpotent if adx is a nilpotent
endomorphism.

Let G = Aut(g)0. Then G is an algebraic subgroup of GL(g) and its Lie
algebra is adg.

Definition

If e is a nilpotent element of g then all the elements of the orbit G · e are
nilpotent. In this case, the orbit is said to be nilpotent.



Let g be a simple Lie algebra over C.

Definition

An element x ∈ g is said to be nilpotent if adx is a nilpotent
endomorphism.

Let G = Aut(g)0. Then G is an algebraic subgroup of GL(g) and its Lie
algebra is adg.

Definition

If e is a nilpotent element of g then all the elements of the orbit G · e are
nilpotent. In this case, the orbit is said to be nilpotent.



Let g be a simple Lie algebra over C.

Definition

An element x ∈ g is said to be nilpotent if adx is a nilpotent
endomorphism.

Let G = Aut(g)0. Then G is an algebraic subgroup of GL(g) and its Lie
algebra is adg.

Definition

If e is a nilpotent element of g then all the elements of the orbit G · e are
nilpotent. In this case, the orbit is said to be nilpotent.



Let g be a simple Lie algebra over C.

Definition

An element x ∈ g is said to be nilpotent if adx is a nilpotent
endomorphism.

Let G = Aut(g)0. Then G is an algebraic subgroup of GL(g) and its Lie
algebra is adg.

Definition

If e is a nilpotent element of g then all the elements of the orbit G · e are
nilpotent. In this case, the orbit is said to be nilpotent.



Theorem (Jacobson-Morozov)

For a nilpotent e ∈ g there are h, f such that

[h, e] = 2e, [h, f ] = −2f , [e, f ] = h.

The triple (h, e, f ) is called an sl2-triple.

Definition

ZG (e) := {g ∈ G | g(e) = e}.
ZG (h, e, f ) := {g ∈ G | g(h) = h, g(e) = e, g(f ) = f }.

The aim of our work is to compute ZG (e)/Z
0
G (e), where e is the

representative of a nilpotent orbit.

Theorem

Representatives of the component group of ZG (h, e, f ) are also
representatives of the component group of ZG (e).
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Fix a base ∆ = {α1, . . . , αl} of the root system Φ of g and a canonical
generating set {hi , x±αi}.
Let π be a permutation of {1, . . . , l} such that ⟨αi , αj⟩ = ⟨απ(i), απ(j)⟩. It
follows that there is a unique automorphism σπ of g such that
σπ(hi ) = hπ(i), σπ(x±αi ) = x±απ(i)

.

Definition

The automorphism σπ, constructed as above, is called diagram
automorphism.
Since σπ1π2 = σπ1σπ2 , we can define a (finite) group of diagram
automorphisms of g denoted Γ.

Proposition

With the notation above, we have the following:

Aut(g) = G ⋊ Γ.



Fix a base ∆ = {α1, . . . , αl} of the root system Φ of g and a canonical
generating set {hi , x±αi}.
Let π be a permutation of {1, . . . , l} such that ⟨αi , αj⟩ = ⟨απ(i), απ(j)⟩. It
follows that there is a unique automorphism σπ of g such that
σπ(hi ) = hπ(i), σπ(x±αi ) = x±απ(i)

.

Definition

The automorphism σπ, constructed as above, is called diagram
automorphism.
Since σπ1π2 = σπ1σπ2 , we can define a (finite) group of diagram
automorphisms of g denoted Γ.

Proposition

With the notation above, we have the following:

Aut(g) = G ⋊ Γ.



Classical Lie Algebras

An := sl(n + 1) = {x ∈ gl(n + 1) : tr (x) = 0}

Bn := so(2n+1) =

x ∈ gl(2n + 1) : sx = −sxT , s =

1 0 0
0 0 In
0 In 0


Cn := sp(2n) =

{
x ∈ gl(2n) : sx = −sxT , s =

(
0 In

−In 0

)}
Dn := so(2n) =

{
x ∈ gl(2n) : sx = −sxT , s =

(
0 In
In 0

)}

For the above Lie algebras we can compute the component group explicitly
by constructing an algorithm which follows the theoretical approach given
by J. C. Jantzen (2004).



Let Ĝ = O(V ) and g = so(V ).
Let a be the subalgebra spanned by an sl2-triple in g, say (h, e, f ). Then
V = V1 ⊕ · · · ⊕ Vm, where Vi is an irreducible a-module of dimension di .

From sl2 theory, each Vi has a unique element vi such that:

1 f · vi = 0;

2 h · vi = (−di + 1)vi ;

3 edi · vi = 0 and ek · vi for 0 ≤ k ≤ di − 1 is a basis of Vi .

Let Ms := span{vj : dj = s}.

Theorem

ZĜ (h, e, f ) −→
∏
s odd

O(Ms)×
∏

s even

Sp(Ms)

is an isomorphism of groups.
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For the explicit computation:

For any odd s, find an element gs ∈ O(Ms) such that det(gs) = −1;

Compute the preimage ĝs := 1× · · · × 1× gs × 1× · · · × 1 for any
odd s;

Let M be the group generated by the ĝs ;

For g ∈ M, compute σg ∈ ZG (h, e, f ) as σg (x) = gxg−1;

Check whether σg ∈ Z 0
G (h, e, f ) to determine ZG (h, e, f )/Z

0
G (h, e, f ).

In general, the component group is isomorphic to (Z/2Z)a, where a is
the number of even integers appearing among the di .
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For g ∈ M, compute σg ∈ ZG (h, e, f ) as σg (x) = gxg−1;

Check whether σg ∈ Z 0
G (h, e, f ) to determine ZG (h, e, f )/Z

0
G (h, e, f ).

In general, the component group is isomorphic to (Z/2Z)a, where a is
the number of even integers appearing among the di .

Theorem
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Exceptional Lie algebras

From now on, let g be a Lie algebra of type G2,F4,E6,E7 or E8.

Nilpotent orbits of such Lie algebras where characterized by
A.V .Alekseevskii (1978) and Sommers (1998). Moreover, R. Lawther and
D. M. Testerman made some impressive hand computations of component
groups (2011).

Summarizing, we have the following data:

List of all nilpotent orbits;

Isomorphism types of the component groups of the orbits;

Explicit computations of generators of component groups.

Our goal is to overcome limits of the last point, providing a unified
strategy and developing computational methods to find generators for
component groups.
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Definition

A Lie algebra g is reductive if g = zg(g)⊕ [g, g].

Fix an sl2-triple (h, e, f ) and let:

c1 := zg(h, e, f ) := {x ∈ g | [h, x ] = [e, x ] = [f , x ] = 0};
ĉ2 := zg(c1) := {x ∈ g | [y , x ] = 0 for all y ∈ c1};
c2 := [̂c2, ĉ2].

Lemma

Any σ ∈ ZG (h, e, f ) stabilizes c1, c2, ĉ2.

For nilpotent orbits of the exceptional Lie algebras there are three distinct
cases:

1 c1 is trivial;

2 c1 has a trivial center, i.e. it is semisimple;

3 c1 has a non-trivial center.
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ĉ2 := zg(c1) := {x ∈ g | [y , x ] = 0 for all y ∈ c1};
c2 := [̂c2, ĉ2].
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c1 is trivial

Observe that in this case ZG (h, e, f ) is a finite group since its Lie algebra
is zero.

Consider ZG (h) = {g ∈ G | g(h) = h}. This group is connected and its
Lie algebra is the reductive Lie algebra defined as follows:

zg(h) = h⊕
⊕
α∈Ψ

gα

where Ψ = {α ∈ Φ | α(h) = 0}. Fix a base Π = {β1, . . . , βm} and a
canonical generating set {x±βi

, hβi
} and let W0 be the Weyl group of Ψ.



c1 is trivial

Then
ZG (h) =

⊔
w∈W0

UHwUw

where
U = {es1adxβ1 · · · esmadxβm for s1, . . . , sm ∈ C}

H is a maximal torus of the form {h1(t1) · · · hl(tl) | t1, . . . , tl ∈ C∗}

hi (t) = wβi
(t)wβi

(1)−1,wβi
(t) = etadxβi e−t−1adx−βi etadxβi

Uw = {eui1adxβi1 · · · euimadxβim for u1, . . . , um ∈ C}

Ψw = {βi1 , . . . , βin} ⊂ Φ the set of all βi such that w(βi ) is a negative root .

At this point it suffices to set g(e) = e for g ∈ ZG (h) and solve with
respect to the indeterminates s1, . . . , sm, t1, . . . , tl , u1, . . . , um.
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c1 is semisimple

Set c := c1 ⊕ c2 and c⊥ = {x ∈ g | k(x , y) = 0 for all y ∈ c}.

The Killing form is non-degenerate, being g semisimple. This implies that
c ∩ c⊥ = 0, hence g = c⊕ c⊥.

Lemma

[c, c⊥] ⊂ c⊥, i.e. c⊥ is a c-module.
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c1 is semisimple

Let σ ∈ ZG (h, e, f ).

σ|c1 ∈ Aut(c1) = Aut(c1)
0 ⋊ Γc1 = ZG (h, e, f )

0 ⋊ Γc1 . In other words,

we can find ϕ ∈ ZG (h, e, f )
0 such that σϕ|c1 ∈ Γc1 .

σ|c2 ∈ ZAut(c2)(h, e, f ) but its Lie algebra is zc2 ⊂ zg ∩ c2 = 0. Hence
ZAut(c2)(h, e, f ) is finite.

All this implies that we can determine a finite set U of automorphisms of c
that stabilize c1 and c2 and such that extending these automorphisms to
all of g gives at least an element for each component of ZG (h, e, f ).

It turns out that an arbitrary element τ of U can be extended in a finite
number of ways.
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c1 is semisimple

Let V = c⊥ and write V = V1 ⊕ · · · ⊕ Vm, where Vi are the irreducible
c-modules. V can be assumed to be multiplicity free.

Fix a canonical generating set {hi , xi , yi for 1 ≤ i ≤ s} and compute
the maximal vectors {v1, . . . , vm}, i.e. vectors such that xj · vi = 0 for
all j .

Consider the canonical generating set
{τ(hi ), τ(xi ), τ(yi ) for 1 ≤ i ≤ s} and compute the maximal vectors
{w1, . . . ,wm}.
Fix i0 with 1 ≤ i0 ≤ m and define integers ν i01 , . . . , ν

i0
s by

hi · vi0 = ν i0i vi0 .

If there is a j0 such that τ(hi ) · wj0 = ν i0i wj0 for 1 ≤ i ≤ s then the
extension of τ has to map vi0 → ki0,j0wj0 . We get then a system of
equations between generators of g in the indeterminates ki0,j0 .
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c1 has non-trivial center

In this case we do not know what the possible restrictions of an element in
ZG (h, e, f ) to c1 can be. We proceed as follows:

Compute c1 and then c2;

Compute the finite group of diagram automorphisms ZAut(c2)(h, e, f )
as before;

Try to extend these morphisms directly from c2 to g;

We need to use different strategies case by case.
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