# Component groups of the stabilizers of nilpotent orbit representatives

Emanuele Di Bella, Willem A. De Graaf



Let  ${\mathfrak g}$  be a simple Lie algebra over  ${\mathbb C}.$ 

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Let  $\mathfrak{g}$  be a simple Lie algebra over  $\mathbb{C}$ .

### Definition

An element  $x \in \mathfrak{g}$  is said to be nilpotent if adx is a nilpotent endomorphism.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let  $\mathfrak{g}$  be a simple Lie algebra over  $\mathbb{C}$ .

### Definition

An element  $x \in \mathfrak{g}$  is said to be nilpotent if adx is a nilpotent endomorphism.

Let  $G = Aut(\mathfrak{g})^0$ . Then G is an algebraic subgroup of  $GL(\mathfrak{g})$  and its Lie algebra is  $ad\mathfrak{g}$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let  $\mathfrak{g}$  be a simple Lie algebra over  $\mathbb{C}$ .

### Definition

An element  $x \in \mathfrak{g}$  is said to be nilpotent if adx is a nilpotent endomorphism.

Let  $G = Aut(\mathfrak{g})^0$ . Then G is an algebraic subgroup of  $GL(\mathfrak{g})$  and its Lie algebra is  $ad\mathfrak{g}$ .

### Definition

If e is a nilpotent element of  $\mathfrak{g}$  then all the elements of the orbit  $G \cdot e$  are nilpotent. In this case, the orbit is said to be nilpotent.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For a nilpotent  $e \in \mathfrak{g}$  there are h, f such that

$$[h, e] = 2e, [h, f] = -2f, [e, f] = h.$$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

The triple (h, e, f) is called an  $\mathfrak{sl}_2$ -triple.

For a nilpotent  $e \in \mathfrak{g}$  there are h, f such that

$$[h, e] = 2e, [h, f] = -2f, [e, f] = h.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The triple (h, e, f) is called an  $\mathfrak{sl}_2$ -triple.

Definition

$$Z_G(e) := \{g \in G \mid g(e) = e\}.$$
  
 $Z_G(h, e, f) := \{g \in G \mid g(h) = h, g(e) = e, g(f) = f\}.$ 

For a nilpotent  $e \in \mathfrak{g}$  there are h, f such that

$$[h, e] = 2e, [h, f] = -2f, [e, f] = h.$$

The triple (h, e, f) is called an  $\mathfrak{sl}_2$ -triple.

### Definition

$$Z_G(e) := \{g \in G \mid g(e) = e\}.$$
  
 $Z_G(h, e, f) := \{g \in G \mid g(h) = h, g(e) = e, g(f) = f\}.$ 

The aim of our work is to compute  $Z_G(e)/Z_G^0(e)$ , where *e* is the representative of a nilpotent orbit.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For a nilpotent  $e \in \mathfrak{g}$  there are h, f such that

$$[h, e] = 2e, [h, f] = -2f, [e, f] = h.$$

The triple (h, e, f) is called an  $\mathfrak{sl}_2$ -triple.

### Definition

$$Z_G(e) := \{g \in G \mid g(e) = e\}.$$
  
 $Z_G(h, e, f) := \{g \in G \mid g(h) = h, g(e) = e, g(f) = f\}.$ 

The aim of our work is to compute  $Z_G(e)/Z_G^0(e)$ , where *e* is the representative of a nilpotent orbit.

#### Theorem

Representatives of the component group of  $Z_G(h, e, f)$  are also representatives of the component group of  $Z_G(e)$ .

Fix a base  $\Delta = \{\alpha_1, \ldots, \alpha_l\}$  of the root system  $\Phi$  of  $\mathfrak{g}$  and a canonical generating set  $\{h_i, x_{\pm \alpha_i}\}$ . Let  $\pi$  be a permutation of  $\{1, \ldots, l\}$  such that  $\langle \alpha_i, \alpha_j \rangle = \langle \alpha_{\pi(i)}, \alpha_{\pi(j)} \rangle$ . It follows that there is a unique automorphism  $\sigma_{\pi}$  of  $\mathfrak{g}$  such that  $\sigma_{\pi}(h_i) = h_{\pi(i)}, \sigma_{\pi}(x_{\pm \alpha_i}) = x_{\pm \alpha_{\pi(i)}}$ .

Fix a base  $\Delta = \{\alpha_1, \ldots, \alpha_l\}$  of the root system  $\Phi$  of  $\mathfrak{g}$  and a canonical generating set  $\{h_i, x_{\pm \alpha_i}\}$ . Let  $\pi$  be a permutation of  $\{1, \ldots, l\}$  such that  $\langle \alpha_i, \alpha_j \rangle = \langle \alpha_{\pi(i)}, \alpha_{\pi(j)} \rangle$ . It follows that there is a unique automorphism  $\sigma_{\pi}$  of  $\mathfrak{g}$  such that  $\sigma_{\pi}(h_i) = h_{\pi(i)}, \sigma_{\pi}(x_{\pm \alpha_i}) = x_{\pm \alpha_{\pi(i)}}$ .

### Definition

The automorphism  $\sigma_{\pi}$ , constructed as above, is called diagram automorphism.

Since  $\sigma_{\pi_1\pi_2} = \sigma_{\pi_1}\sigma_{\pi_2}$ , we can define a (finite) group of diagram automorphisms of  $\mathfrak{g}$  denoted  $\Gamma$ .

### Proposition

With the notation above, we have the following:

 $Aut(\mathfrak{g}) = G \rtimes \Gamma.$ 

### Classical Lie Algebras

• 
$$A_n := \mathfrak{sl}(n+1) = \{x \in \mathfrak{gl}(n+1) : \operatorname{tr} (x) = 0\}$$
  
•  $B_n := \mathfrak{so}(2n+1) = \left\{ x \in \mathfrak{gl}(2n+1) : \operatorname{sx} = -\operatorname{sx}^T, s = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & l_n \\ 0 & l_n & 0 \end{pmatrix} \right\}$   
•  $C_n := \mathfrak{sp}(2n) = \left\{ x \in \mathfrak{gl}(2n) : \operatorname{sx} = -\operatorname{sx}^T, s = \begin{pmatrix} 0 & l_n \\ -l_n & 0 \end{pmatrix} \right\}$   
•  $D_n := \mathfrak{so}(2n) = \left\{ x \in \mathfrak{gl}(2n) : \operatorname{sx} = -\operatorname{sx}^T, s = \begin{pmatrix} 0 & l_n \\ l_n & 0 \end{pmatrix} \right\}$ 

For the above Lie algebras we can compute the component group explicitly by constructing an algorithm which follows the theoretical approach given by J. C. Jantzen (2004).

Let  $\hat{G} = O(V)$  and  $\mathfrak{g} = \mathfrak{so}(V)$ .

Let  $\mathfrak{a}$  be the subalgebra spanned by an  $\mathfrak{sl}_2$ -triple in  $\mathfrak{g}$ , say (h, e, f). Then  $V = V_1 \oplus \cdots \oplus V_m$ , where  $V_i$  is an irreducible  $\mathfrak{a}$ -module of dimension  $d_i$ .

Let 
$$\hat{G} = O(V)$$
 and  $\mathfrak{g} = \mathfrak{so}(V)$ .

Let a be the subalgebra spanned by an  $\mathfrak{sl}_2$ -triple in  $\mathfrak{g}$ , say (h, e, f). Then  $V = V_1 \oplus \cdots \oplus V_m$ , where  $V_i$  is an irreducible a-module of dimension  $d_i$ . From  $\mathfrak{sl}_2$  theory, each  $V_i$  has a unique element  $v_i$  such that:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let 
$$\hat{G} = O(V)$$
 and  $\mathfrak{g} = \mathfrak{so}(V)$ .

Let a be the subalgebra spanned by an  $\mathfrak{sl}_2$ -triple in  $\mathfrak{g}$ , say (h, e, f). Then  $V = V_1 \oplus \cdots \oplus V_m$ , where  $V_i$  is an irreducible a-module of dimension  $d_i$ . From  $\mathfrak{sl}_2$  theory, each  $V_i$  has a unique element  $v_i$  such that:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let 
$$\hat{G} = O(V)$$
 and  $\mathfrak{g} = \mathfrak{so}(V)$ .  
Let  $\mathfrak{a}$  be the subalgebra spanned by an  $\mathfrak{sl}_2$ -triple in  $\mathfrak{g}$ , say  $(h, e, f)$ . Then  $V = V_1 \oplus \cdots \oplus V_m$ , where  $V_i$  is an irreducible  $\mathfrak{a}$ -module of dimension  $d_i$ .  
From  $\mathfrak{sl}_2$  theory, each  $V_i$  has a unique element  $v_i$  such that:

Theorem

$$Z_{\hat{G}}(h, e, f) \longrightarrow \prod_{s \text{ odd}} O(M_s) \times \prod_{s \text{ even}} Sp(M_s)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• For any odd s, find an element  $g_s \in O(M_s)$  such that  $det(g_s) = -1$ ;

#### Theorem

$$Z_{\hat{G}}(h, e, f) \longrightarrow \prod_{s \text{ odd}} O(M_s) \times \prod_{s \text{ even}} Sp(M_s)$$

- For any odd s, find an element  $g_s \in O(M_s)$  such that  $det(g_s) = -1$ ;
- Compute the preimage  $\hat{g}_s := 1 \times \cdots \times 1 \times g_s \times 1 \times \cdots \times 1$  for any odd s;

Theorem

$$Z_{\hat{G}}(h, e, f) \longrightarrow \prod_{s \text{ odd}} O(M_s) \times \prod_{s \text{ even}} Sp(M_s)$$

- For any odd s, find an element  $g_s \in O(M_s)$  such that  $det(g_s) = -1$ ;
- Compute the preimage  $\hat{g}_s := 1 \times \cdots \times 1 \times g_s \times 1 \times \cdots \times 1$  for any odd s;
- Let *M* be the group generated by the  $\hat{g}_s$ ;

Theorem

$$Z_{\hat{G}}(h, e, f) \longrightarrow \prod_{s \text{ odd}} O(M_s) \times \prod_{s \text{ even}} Sp(M_s)$$

- For any odd s, find an element  $g_s \in O(M_s)$  such that  $det(g_s) = -1$ ;
- Compute the preimage  $\hat{g}_s := 1 \times \cdots \times 1 \times g_s \times 1 \times \cdots \times 1$  for any odd s;
- Let *M* be the group generated by the  $\hat{g}_s$ ;
- For  $g \in M$ , compute  $\sigma_g \in Z_G(h, e, f)$  as  $\sigma_g(x) = gxg^{-1}$ ;

Theorem

$$Z_{\hat{G}}(h, e, f) \longrightarrow \prod_{s \text{ odd}} O(M_s) \times \prod_{s \text{ even}} Sp(M_s)$$

- For any odd s, find an element  $g_s \in O(M_s)$  such that  $det(g_s) = -1$ ;
- Compute the preimage  $\hat{g}_s := 1 \times \cdots \times 1 \times g_s \times 1 \times \cdots \times 1$  for any odd s;
- Let *M* be the group generated by the  $\hat{g}_s$ ;
- For  $g \in M$ , compute  $\sigma_g \in Z_G(h, e, f)$  as  $\sigma_g(x) = gxg^{-1}$ ;
- Check whether  $\sigma_g \in Z_G^0(h, e, f)$  to determine  $Z_G(h, e, f)/Z_G^0(h, e, f)$ .

Theorem

$$Z_{\hat{G}}(h, e, f) \longrightarrow \prod_{s \text{ odd}} O(M_s) \times \prod_{s \text{ even}} Sp(M_s)$$

- For any odd s, find an element  $g_s \in O(M_s)$  such that  $det(g_s) = -1$ ;
- Compute the preimage  $\hat{g}_s := 1 \times \cdots \times 1 \times g_s \times 1 \times \cdots \times 1$  for any odd s;
- Let *M* be the group generated by the *ĝ<sub>s</sub>*;
- For  $g \in M$ , compute  $\sigma_g \in Z_G(h, e, f)$  as  $\sigma_g(x) = gxg^{-1}$ ;
- Check whether  $\sigma_g \in Z_G^0(h, e, f)$  to determine  $Z_G(h, e, f)/Z_G^0(h, e, f)$ .
- In general, the component group is isomorphic to (Z/2Z)<sup>a</sup>, where a is the number of even integers appearing among the d<sub>i</sub>.

Theorem

$$Z_{\hat{G}}(h, e, f) \longrightarrow \prod_{s \text{ odd}} O(M_s) \times \prod_{s \text{ even}} Sp(M_s)$$

From now on, let  $\mathfrak{g}$  be a Lie algebra of type  $G_2, F_4, E_6, E_7$  or  $E_8$ .

Nilpotent orbits of such Lie algebras where characterized by *A.V.Alekseevskii* (1978) and Sommers (1998). Moreover, R. Lawther and D. M. Testerman made some impressive hand computations of component groups (2011).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

From now on, let  $\mathfrak{g}$  be a Lie algebra of type  $G_2, F_4, E_6, E_7$  or  $E_8$ .

Nilpotent orbits of such Lie algebras where characterized by *A.V.Alekseevskii* (1978) and Sommers (1998). Moreover, R. Lawther and D. M. Testerman made some impressive hand computations of component groups (2011).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

From now on, let  $\mathfrak{g}$  be a Lie algebra of type  $G_2, F_4, E_6, E_7$  or  $E_8$ .

Nilpotent orbits of such Lie algebras where characterized by *A.V.Alekseevskii* (1978) and Sommers (1998). Moreover, R. Lawther and D. M. Testerman made some impressive hand computations of component groups (2011).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Summarizing, we have the following data:

• List of all nilpotent orbits;

From now on, let  $\mathfrak{g}$  be a Lie algebra of type  $G_2, F_4, E_6, E_7$  or  $E_8$ .

Nilpotent orbits of such Lie algebras where characterized by *A.V.Alekseevskii* (1978) and Sommers (1998). Moreover, R. Lawther and D. M. Testerman made some impressive hand computations of component groups (2011).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- List of all nilpotent orbits;
- Isomorphism types of the component groups of the orbits;

From now on, let  $\mathfrak{g}$  be a Lie algebra of type  $G_2, F_4, E_6, E_7$  or  $E_8$ .

Nilpotent orbits of such Lie algebras where characterized by *A.V.Alekseevskii* (1978) and Sommers (1998). Moreover, R. Lawther and D. M. Testerman made some impressive hand computations of component groups (2011).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- List of all nilpotent orbits;
- Isomorphism types of the component groups of the orbits;
- Explicit computations of generators of component groups.

From now on, let  $\mathfrak{g}$  be a Lie algebra of type  $G_2, F_4, E_6, E_7$  or  $E_8$ .

Nilpotent orbits of such Lie algebras where characterized by *A.V.Alekseevskii* (1978) and Sommers (1998). Moreover, R. Lawther and D. M. Testerman made some impressive hand computations of component groups (2011).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- List of all nilpotent orbits;
- Isomorphism types of the component groups of the orbits;
- Explicit computations of generators of component groups.

From now on, let  $\mathfrak{g}$  be a Lie algebra of type  $G_2, F_4, E_6, E_7$  or  $E_8$ .

Nilpotent orbits of such Lie algebras where characterized by *A.V.Alekseevskii* (1978) and Sommers (1998). Moreover, R. Lawther and D. M. Testerman made some impressive hand computations of component groups (2011).

Summarizing, we have the following data:

- List of all nilpotent orbits;
- Isomorphism types of the component groups of the orbits;
- Explicit computations of generators of component groups.

Our goal is to overcome limits of the last point, providing a unified strategy and developing computational methods to find generators for component groups.

A Lie algebra  $\mathfrak{g}$  is reductive if  $\mathfrak{g} = \mathfrak{z}_{\mathfrak{g}}(\mathfrak{g}) \oplus [\mathfrak{g}, \mathfrak{g}].$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A Lie algebra  $\mathfrak{g}$  is reductive if  $\mathfrak{g} = \mathfrak{z}_{\mathfrak{g}}(\mathfrak{g}) \oplus [\mathfrak{g}, \mathfrak{g}]$ .

Fix an  $\mathfrak{sl}_2$ -triple (h, e, f) and let:

• 
$$c_1 := \mathfrak{z}_{\mathfrak{g}}(h, e, f) := \{x \in \mathfrak{g} \mid [h, x] = [e, x] = [f, x] = 0\};$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• 
$$\hat{\mathfrak{c}}_2 := \mathfrak{z}_{\mathfrak{g}}(\mathfrak{c}_1) := \{ x \in \mathfrak{g} \mid [y, x] = 0 \text{ for all } y \in \mathfrak{c}_1 \};$$

• 
$$\mathfrak{c}_2 := [\hat{\mathfrak{c}}_2, \hat{\mathfrak{c}}_2].$$

A Lie algebra  $\mathfrak{g}$  is reductive if  $\mathfrak{g} = \mathfrak{z}_{\mathfrak{g}}(\mathfrak{g}) \oplus [\mathfrak{g}, \mathfrak{g}]$ .

Fix an  $\mathfrak{sl}_2$ -triple (h, e, f) and let:

• 
$$c_1 := \mathfrak{z}_{\mathfrak{g}}(h, e, f) := \{x \in \mathfrak{g} \mid [h, x] = [e, x] = [f, x] = 0\};$$
  
•  $\hat{c}_2 := \mathfrak{z}_{\mathfrak{g}}(\mathfrak{c}_1) := \{x \in \mathfrak{g} \mid [y, x] = 0 \text{ for all } y \in \mathfrak{c}_1\};$   
•  $\mathfrak{c}_2 := [\hat{\mathfrak{c}}_2, \hat{\mathfrak{c}}_2].$ 

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

#### Lemma

Any  $\sigma \in Z_G(h, e, f)$  stabilizes  $\mathfrak{c}_1, \mathfrak{c}_2, \hat{\mathfrak{c}}_2$ .

A Lie algebra  $\mathfrak{g}$  is reductive if  $\mathfrak{g} = \mathfrak{z}_{\mathfrak{g}}(\mathfrak{g}) \oplus [\mathfrak{g}, \mathfrak{g}]$ .

Fix an  $\mathfrak{sl}_2$ -triple (h, e, f) and let:

• 
$$\mathfrak{c}_1 := \mathfrak{z}_\mathfrak{g}(h, e, f) := \{x \in \mathfrak{g} \mid [h, x] = [e, x] = [f, x] = 0\};$$
  
•  $\hat{\mathfrak{c}}_2 := \mathfrak{z}_\mathfrak{g}(\mathfrak{c}_1) := \{x \in \mathfrak{g} \mid [y, x] = 0 \text{ for all } y \in \mathfrak{c}_1\};$   
•  $\mathfrak{c}_2 := [\hat{\mathfrak{c}}_2, \hat{\mathfrak{c}}_2].$ 

#### Lemma

Any 
$$\sigma \in Z_G(h, e, f)$$
 stabilizes  $\mathfrak{c}_1, \mathfrak{c}_2, \hat{\mathfrak{c}}_2$ .

For nilpotent orbits of the exceptional Lie algebras there are three distinct cases:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



A Lie algebra  $\mathfrak{g}$  is reductive if  $\mathfrak{g} = \mathfrak{z}_{\mathfrak{g}}(\mathfrak{g}) \oplus [\mathfrak{g}, \mathfrak{g}]$ .

Fix an  $\mathfrak{sl}_2$ -triple (h, e, f) and let:

• 
$$c_1 := \mathfrak{z}_{\mathfrak{g}}(h, e, f) := \{x \in \mathfrak{g} \mid [h, x] = [e, x] = [f, x] = 0\};$$
  
•  $\hat{c}_2 := \mathfrak{z}_{\mathfrak{g}}(\mathfrak{c}_1) := \{x \in \mathfrak{g} \mid [y, x] = 0 \text{ for all } y \in \mathfrak{c}_1\};$   
•  $\mathfrak{c}_2 := [\hat{\mathfrak{c}}_2, \hat{\mathfrak{c}}_2].$ 

#### Lemma

Any 
$$\sigma \in Z_G(h, e, f)$$
 stabilizes  $\mathfrak{c}_1, \mathfrak{c}_2, \hat{\mathfrak{c}}_2$ .

For nilpotent orbits of the exceptional Lie algebras there are three distinct cases:



2  $\mathfrak{c}_1$  has a trivial center, i.e. it is semisimple;

A Lie algebra  $\mathfrak{g}$  is reductive if  $\mathfrak{g} = \mathfrak{z}_{\mathfrak{g}}(\mathfrak{g}) \oplus [\mathfrak{g}, \mathfrak{g}]$ .

Fix an  $\mathfrak{sl}_2$ -triple (h, e, f) and let:

• 
$$c_1 := \mathfrak{z}_{\mathfrak{g}}(h, e, f) := \{x \in \mathfrak{g} \mid [h, x] = [e, x] = [f, x] = 0\};$$
  
•  $\hat{c}_2 := \mathfrak{z}_{\mathfrak{g}}(\mathfrak{c}_1) := \{x \in \mathfrak{g} \mid [y, x] = 0 \text{ for all } y \in \mathfrak{c}_1\};$   
•  $\mathfrak{c}_2 := [\hat{\mathfrak{c}}_2, \hat{\mathfrak{c}}_2].$ 

#### Lemma

Any 
$$\sigma \in Z_G(h, e, f)$$
 stabilizes  $\mathfrak{c}_1, \mathfrak{c}_2, \hat{\mathfrak{c}}_2$ .

For nilpotent orbits of the exceptional Lie algebras there are three distinct cases:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- c<sub>1</sub> is trivial;
- 2  $c_1$  has a trivial center, i.e. it is semisimple;
- $\bigcirc$   $\mathfrak{c}_1$  has a non-trivial center.

Observe that in this case  $Z_G(h, e, f)$  is a finite group since its Lie algebra is zero.

Consider  $Z_G(h) = \{g \in G \mid g(h) = h\}$ . This group is connected and its Lie algebra is the reductive Lie algebra defined as follows:

$$\mathfrak{z}_\mathfrak{g}(h)=\mathfrak{h}\oplus igoplus_{lpha\in \Psi}\mathfrak{g}_lpha$$

where  $\Psi = \{ \alpha \in \Phi \mid \alpha(h) = 0 \}$ . Fix a base  $\Pi = \{ \beta_1, \dots, \beta_m \}$  and a canonical generating set  $\{ x_{\pm \beta_i}, h_{\beta_i} \}$  and let  $W_0$  be the Weyl group of  $\Psi$ .

(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)<

## $\mathfrak{c}_1$ is trivial

Then

$$Z_G(h) = \bigsqcup_{w \in W_0} UHwU_w$$

where

$$U = \{e^{s_1 a d x_{\beta_1}} \cdots e^{s_m a d x_{\beta_m}} \text{ for } s_1, \dots, s_m \in \mathbb{C}\}$$

*H* is a maximal torus of the form  $\{h_1(t_1)\cdots h_l(t_l) \mid t_1,\ldots,t_l \in \mathbb{C}^*\}$ 

$$egin{aligned} h_i(t) &= w_{eta_i}(t) w_{eta_i}(1)^{-1}, w_{eta_i}(t) = e^{tadx_{eta_i}} e^{-t^{-1}adx_{-eta_i}} e^{tadx_{eta_i}} \ U_w &= \{e^{u_{i_1}adx_{eta_{i_1}}} \cdots e^{u_{i_m}adx_{eta_{i_m}}} ext{ for } u_1, \dots, u_m \in \mathbb{C}\} \end{aligned}$$

 $\Psi_w = \{\beta_{i_1}, \dots, \beta_{i_n}\} \subset \Phi$  the set of all  $\beta_i$  such that  $w(\beta_i)$  is a negative root

#### ◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

# $\mathfrak{c}_1$ is trivial

Then

$$Z_G(h) = \bigsqcup_{w \in W_0} UHwU_w$$

where

$$U = \{e^{s_1 a d x_{\beta_1}} \cdots e^{s_m a d x_{\beta_m}} \text{ for } s_1, \dots, s_m \in \mathbb{C}\}$$

*H* is a maximal torus of the form  $\{h_1(t_1)\cdots h_l(t_l) \mid t_1,\ldots,t_l \in \mathbb{C}^*\}$ 

$$egin{aligned} h_i(t) &= w_{eta_i}(t) w_{eta_i}(1)^{-1}, w_{eta_i}(t) = e^{tadx_{eta_i}} e^{-t^{-1}adx_{-eta_i}} e^{tadx_{eta_i}} \ U_w &= \{e^{u_{i_1}adx_{eta_{i_1}}} \cdots e^{u_{i_m}adx_{eta_{i_m}}} ext{ for } u_1, \dots, u_m \in \mathbb{C}\} \end{aligned}$$

 $\Psi_w = \{\beta_{i_1}, \dots, \beta_{i_n}\} \subset \Phi$  the set of all  $\beta_i$  such that  $w(\beta_i)$  is a negative root

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

At this point it suffices to set g(e) = e for  $g \in Z_G(h)$  and solve with respect to the indeterminates  $s_1, \ldots, s_m, t_1, \ldots, t_l, u_1, \ldots, u_m$ .

Set  $\mathfrak{c} := \mathfrak{c}_1 \oplus \mathfrak{c}_2$  and  $\mathfrak{c}^{\perp} = \{ x \in \mathfrak{g} \mid k(x, y) = 0 \text{ for all } y \in \mathfrak{c} \}.$ 

The Killing form is non-degenerate, being g semisimple. This implies that  $\mathfrak{c} \cap \mathfrak{c}^{\perp} = 0$ , hence  $\mathfrak{g} = \mathfrak{c} \oplus \mathfrak{c}^{\perp}$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Set  $\mathfrak{c} := \mathfrak{c}_1 \oplus \mathfrak{c}_2$  and  $\mathfrak{c}^{\perp} = \{ x \in \mathfrak{g} \mid k(x, y) = 0 \text{ for all } y \in \mathfrak{c} \}.$ 

The Killing form is non-degenerate, being  $\mathfrak{g}$  semisimple. This implies that  $\mathfrak{c} \cap \mathfrak{c}^{\perp} = 0$ , hence  $\mathfrak{g} = \mathfrak{c} \oplus \mathfrak{c}^{\perp}$ .

Lemma

 $[\mathfrak{c},\mathfrak{c}^{\perp}]\subset\mathfrak{c}^{\perp}$ , i.e.  $\mathfrak{c}^{\perp}$  is a  $\mathfrak{c}$ -module.

Let  $\sigma \in Z_G(h, e, f)$ .



Let  $\sigma \in Z_G(h, e, f)$ .

•  $\sigma|_{\mathfrak{c}_1} \in Aut(\mathfrak{c}_1) = Aut(\mathfrak{c}_1)^0 \rtimes \Gamma_{\mathfrak{c}_1} = Z_G(h, e, f)^0 \rtimes \Gamma_{\mathfrak{c}_1}$ . In other words, we can find  $\phi \in Z_G(h, e, f)^0$  such that  $\sigma \phi|_{\mathfrak{c}_1} \in \Gamma_{\mathfrak{c}_1}$ .

Let  $\sigma \in Z_G(h, e, f)$ .

- σ|<sub>c1</sub> ∈ Aut(c1) = Aut(c1)<sup>0</sup> ⋊ Γ<sub>c1</sub> = Z<sub>G</sub>(h, e, f)<sup>0</sup> ⋊ Γ<sub>c1</sub>. In other words, we can find φ ∈ Z<sub>G</sub>(h, e, f)<sup>0</sup> such that σφ|<sub>c1</sub> ∈ Γ<sub>c1</sub>.
- $\sigma|_{\mathfrak{c}_2} \in Z_{Aut(\mathfrak{c}_2)}(h, e, f)$  but its Lie algebra is  $\mathfrak{z}_{\mathfrak{c}_2} \subset \mathfrak{z}_{\mathfrak{g}} \cap \mathfrak{c}_2 = 0$ . Hence  $Z_{Aut(\mathfrak{c}_2)}(h, e, f)$  is finite.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let  $\sigma \in Z_G(h, e, f)$ .

- σ|<sub>c1</sub> ∈ Aut(c1) = Aut(c1)<sup>0</sup> ⋊ Γ<sub>c1</sub> = Z<sub>G</sub>(h, e, f)<sup>0</sup> ⋊ Γ<sub>c1</sub>. In other words, we can find φ ∈ Z<sub>G</sub>(h, e, f)<sup>0</sup> such that σφ|<sub>c1</sub> ∈ Γ<sub>c1</sub>.
- $\sigma|_{\mathfrak{c}_2} \in Z_{Aut(\mathfrak{c}_2)}(h, e, f)$  but its Lie algebra is  $\mathfrak{z}_{\mathfrak{c}_2} \subset \mathfrak{z}_{\mathfrak{g}} \cap \mathfrak{c}_2 = 0$ . Hence  $Z_{Aut(\mathfrak{c}_2)}(h, e, f)$  is finite.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let  $\sigma \in Z_G(h, e, f)$ .

- σ|<sub>c1</sub> ∈ Aut(c1) = Aut(c1)<sup>0</sup> ⋊ Γ<sub>c1</sub> = Z<sub>G</sub>(h, e, f)<sup>0</sup> ⋊ Γ<sub>c1</sub>. In other words, we can find φ ∈ Z<sub>G</sub>(h, e, f)<sup>0</sup> such that σφ|<sub>c1</sub> ∈ Γ<sub>c1</sub>.
- $\sigma|_{\mathfrak{c}_2} \in Z_{Aut(\mathfrak{c}_2)}(h, e, f)$  but its Lie algebra is  $\mathfrak{z}_{\mathfrak{c}_2} \subset \mathfrak{z}_{\mathfrak{g}} \cap \mathfrak{c}_2 = 0$ . Hence  $Z_{Aut(\mathfrak{c}_2)}(h, e, f)$  is finite.

All this implies that we can determine a finite set U of automorphisms of  $\mathfrak{c}$  that stabilize  $\mathfrak{c}_1$  and  $\mathfrak{c}_2$  and such that extending these automorphisms to all of  $\mathfrak{g}$  gives at least an element for each component of  $Z_G(h, e, f)$ .

It turns out that an arbitrary element  $\tau$  of U can be extended in a finite number of ways.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let  $V = \mathfrak{c}^{\perp}$  and write  $V = V_1 \oplus \cdots \oplus V_m$ , where  $V_i$  are the irreducible  $\mathfrak{c}$ -modules. V can be assumed to be multiplicity free.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Let  $V = \mathfrak{c}^{\perp}$  and write  $V = V_1 \oplus \cdots \oplus V_m$ , where  $V_i$  are the irreducible  $\mathfrak{c}$ -modules. V can be assumed to be multiplicity free.

Fix a canonical generating set {h<sub>i</sub>, x<sub>i</sub>, y<sub>i</sub> for 1 ≤ i ≤ s} and compute the maximal vectors {v<sub>1</sub>,..., v<sub>m</sub>}, i.e. vectors such that x<sub>j</sub> · v<sub>i</sub> = 0 for all j.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let  $V = \mathfrak{c}^{\perp}$  and write  $V = V_1 \oplus \cdots \oplus V_m$ , where  $V_i$  are the irreducible  $\mathfrak{c}$ -modules. V can be assumed to be multiplicity free.

- Fix a canonical generating set {h<sub>i</sub>, x<sub>i</sub>, y<sub>i</sub> for 1 ≤ i ≤ s} and compute the maximal vectors {v<sub>1</sub>,..., v<sub>m</sub>}, i.e. vectors such that x<sub>j</sub> · v<sub>i</sub> = 0 for all j.
- Consider the canonical generating set  $\{\tau(h_i), \tau(x_i), \tau(y_i) \text{ for } 1 \leq i \leq s\}$  and compute the maximal vectors  $\{w_1, \ldots, w_m\}$ .

Let  $V = \mathfrak{c}^{\perp}$  and write  $V = V_1 \oplus \cdots \oplus V_m$ , where  $V_i$  are the irreducible  $\mathfrak{c}$ -modules. V can be assumed to be multiplicity free.

- Fix a canonical generating set {h<sub>i</sub>, x<sub>i</sub>, y<sub>i</sub> for 1 ≤ i ≤ s} and compute the maximal vectors {v<sub>1</sub>,..., v<sub>m</sub>}, i.e. vectors such that x<sub>j</sub> · v<sub>i</sub> = 0 for all j.
- Consider the canonical generating set  $\{\tau(h_i), \tau(x_i), \tau(y_i) \text{ for } 1 \leq i \leq s\}$  and compute the maximal vectors  $\{w_1, \ldots, w_m\}$ .

• Fix  $i_0$  with  $1 \le i_0 \le m$  and define integers  $\nu_1^{i_0}, \ldots, \nu_s^{i_0}$  by  $h_i \cdot v_{i_0} = \nu_i^{i_0} v_{i_0}$ .

Let  $V = \mathfrak{c}^{\perp}$  and write  $V = V_1 \oplus \cdots \oplus V_m$ , where  $V_i$  are the irreducible  $\mathfrak{c}$ -modules. V can be assumed to be multiplicity free.

- Fix a canonical generating set {h<sub>i</sub>, x<sub>i</sub>, y<sub>i</sub> for 1 ≤ i ≤ s} and compute the maximal vectors {v<sub>1</sub>,..., v<sub>m</sub>}, i.e. vectors such that x<sub>j</sub> · v<sub>i</sub> = 0 for all j.
- Consider the canonical generating set  $\{\tau(h_i), \tau(x_i), \tau(y_i) \text{ for } 1 \leq i \leq s\}$  and compute the maximal vectors  $\{w_1, \ldots, w_m\}$ .
- Fix  $i_0$  with  $1 \le i_0 \le m$  and define integers  $\nu_1^{i_0}, \ldots, \nu_s^{i_0}$  by  $h_i \cdot v_{i_0} = \nu_i^{i_0} v_{i_0}$ .
- If there is a  $j_0$  such that  $\tau(h_i) \cdot w_{j_0} = \nu_i^{i_0} w_{j_0}$  for  $1 \le i \le s$  then the extension of  $\tau$  has to map  $v_{i_0} \to k_{i_0,j_0} w_{j_0}$ . We get then a system of equations between generators of  $\mathfrak{g}$  in the indeterminates  $k_{i_0,j_0}$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

• Compute  $c_1$  and then  $c_2$ ;



- Compute  $\mathfrak{c}_1$  and then  $\mathfrak{c}_2$ ;
- Compute the finite group of diagram automorphisms  $Z_{Aut(c_2)}(h, e, f)$  as before;

- Compute  $\mathfrak{c}_1$  and then  $\mathfrak{c}_2$ ;
- Compute the finite group of diagram automorphisms  $Z_{Aut(c_2)}(h, e, f)$  as before;

• Try to extend these morphisms directly from  $c_2$  to g;

- Compute  $\mathfrak{c}_1$  and then  $\mathfrak{c}_2$ ;
- Compute the finite group of diagram automorphisms  $Z_{Aut(c_2)}(h, e, f)$  as before;

- Try to extend these morphisms directly from  $\mathfrak{c}_2$  to  $\mathfrak{g}$ ;
- We need to use different strategies case by case.