Component groups of the stabilizers of nilpotent orbit representatives

Emanuele Di Bella, Willem A. De Graaf

UNIVERSITÀ DI TRENTO

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C}.

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C}.

Definition

An element $x \in \mathfrak{g}$ is said to be nilpotent if $a d x$ is a nilpotent endomorphism.

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C}.

Definition

An element $x \in \mathfrak{g}$ is said to be nilpotent if $a d x$ is a nilpotent endomorphism.

Let $G=\operatorname{Aut}(\mathfrak{g})^{0}$. Then G is an algebraic subgroup of $G L(\mathfrak{g})$ and its Lie algebra is adg.

Let \mathfrak{g} be a simple Lie algebra over \mathbb{C}.

Definition

An element $x \in \mathfrak{g}$ is said to be nilpotent if $a d x$ is a nilpotent endomorphism.

Let $G=\operatorname{Aut}(\mathfrak{g})^{0}$. Then G is an algebraic subgroup of $G L(\mathfrak{g})$ and its Lie algebra is adg.

Definition

If e is a nilpotent element of \mathfrak{g} then all the elements of the orbit $G \cdot e$ are nilpotent. In this case, the orbit is said to be nilpotent.

Theorem (Jacobson-Morozov)
For a nilpotent $e \in \mathfrak{g}$ there are h, f such that

$$
[h, e]=2 e,[h, f]=-2 f,[e, f]=h .
$$

The triple (h, e, f) is called an $\mathfrak{s l}_{2}$-triple.

Theorem (Jacobson-Morozov)
For a nilpotent $e \in \mathfrak{g}$ there are h, f such that

$$
[h, e]=2 e,[h, f]=-2 f,[e, f]=h
$$

The triple (h, e, f) is called an $\mathfrak{s l}_{2}$-triple.

Definition
$Z_{G}(e):=\{g \in G \mid g(e)=e\}$.
$Z_{G}(h, e, f):=\{g \in G \mid g(h)=h, g(e)=e, g(f)=f\}$.

Theorem (Jacobson-Morozov)
For a nilpotent $e \in \mathfrak{g}$ there are h, f such that

$$
[h, e]=2 e,[h, f]=-2 f,[e, f]=h
$$

The triple (h, e, f) is called an $\mathfrak{s l}_{2}$-triple.

Definition
$Z_{G}(e):=\{g \in G \mid g(e)=e\}$.
$Z_{G}(h, e, f):=\{g \in G \mid g(h)=h, g(e)=e, g(f)=f\}$.

The aim of our work is to compute $Z_{G}(e) / Z_{G}^{0}(e)$, where e is the representative of a nilpotent orbit.

Theorem (Jacobson-Morozov)
For a nilpotent $e \in \mathfrak{g}$ there are h, f such that

$$
[h, e]=2 e,[h, f]=-2 f,[e, f]=h
$$

The triple (h, e, f) is called an $\mathfrak{s l}_{2}$-triple.
Definition
$Z_{G}(e):=\{g \in G \mid g(e)=e\}$.
$Z_{G}(h, e, f):=\{g \in G \mid g(h)=h, g(e)=e, g(f)=f\}$.

The aim of our work is to compute $Z_{G}(e) / Z_{G}^{0}(e)$, where e is the representative of a nilpotent orbit.

Theorem

Representatives of the component group of $Z_{G}(h, e, f)$ are also representatives of the component group of $Z_{G}(e)$.

Fix a base $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ of the root system Φ of \mathfrak{g} and a canonical generating set $\left\{h_{i}, x_{ \pm \alpha_{i}}\right\}$.
Let π be a permutation of $\{1, \ldots, I\}$ such that $\left\langle\alpha_{i}, \alpha_{j}\right\rangle=\left\langle\alpha_{\pi(i)}, \alpha_{\pi(j)}\right\rangle$. It follows that there is a unique automorphism σ_{π} of \mathfrak{g} such that $\sigma_{\pi}\left(h_{i}\right)=h_{\pi(i)}, \sigma_{\pi}\left(x_{ \pm \alpha_{i}}\right)=x_{ \pm \alpha_{\pi(i)}}$.

Fix a base $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ of the root system Φ of \mathfrak{g} and a canonical generating set $\left\{h_{i}, x_{ \pm \alpha_{i}}\right\}$.
Let π be a permutation of $\{1, \ldots, I\}$ such that $\left\langle\alpha_{i}, \alpha_{j}\right\rangle=\left\langle\alpha_{\pi(i)}, \alpha_{\pi(j)}\right\rangle$. It follows that there is a unique automorphism σ_{π} of \mathfrak{g} such that $\sigma_{\pi}\left(h_{i}\right)=h_{\pi(i)}, \sigma_{\pi}\left(x_{ \pm \alpha_{i}}\right)=x_{ \pm \alpha_{\pi(i)}}$.

Definition

The automorphism σ_{π}, constructed as above, is called diagram automorphism.
Since $\sigma_{\pi_{1} \pi_{2}}=\sigma_{\pi_{1}} \sigma_{\pi_{2}}$, we can define a (finite) group of diagram automorphisms of \mathfrak{g} denoted Γ.

Proposition

With the notation above, we have the following:

$$
\operatorname{Aut}(\mathfrak{g})=G \rtimes \Gamma .
$$

Classical Lie Algebras

- $A_{n}:=\mathfrak{s l}(n+1)=\{x \in \mathfrak{g l}(n+1): \operatorname{tr}(x)=0\}$
- $B_{n}:=\mathfrak{s o}(2 n+1)=\left\{x \in \mathfrak{g l l}(2 n+1): s x=-s x^{T}, s=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & I_{n} \\ 0 & I_{n} & 0\end{array}\right)\right\}$
- $C_{n}:=\mathfrak{s p}(2 n)=\left\{x \in \mathfrak{g l}(2 n): s x=-s x^{T}, s=\left(\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right)\right\}$
- $D_{n}:=\mathfrak{s o}(2 n)=\left\{x \in \mathfrak{g l}(2 n): s x=-s x^{T}, s=\left(\begin{array}{cc}0 & I_{n} \\ I_{n} & 0\end{array}\right)\right\}$

For the above Lie algebras we can compute the component group explicitly by constructing an algorithm which follows the theoretical approach given by J. C. Jantzen (2004).

Let $\hat{G}=O(V)$ and $\mathfrak{g}=\mathfrak{s o}(V)$.
Let \mathfrak{a} be the subalgebra spanned by an $\mathfrak{s l}_{2}$-triple in \mathfrak{g}, say (h, e, f). Then $V=V_{1} \oplus \cdots \oplus V_{m}$, where V_{i} is an irreducible \mathfrak{a}-module of dimension d_{i}.

Let $\hat{G}=O(V)$ and $\mathfrak{g}=\mathfrak{s o}(V)$.
Let \mathfrak{a} be the subalgebra spanned by an $\mathfrak{s l}_{2}$-triple in \mathfrak{g}, say (h, e, f). Then $V=V_{1} \oplus \cdots \oplus V_{m}$, where V_{i} is an irreducible \mathfrak{a}-module of dimension d_{i}. From $\mathfrak{s l}_{2}$ theory, each V_{i} has a unique element v_{i} such that:
(1) $f \cdot v_{i}=0$;
(2) $h \cdot v_{i}=\left(-d_{i}+1\right) v_{i}$;
(3) $e^{d_{i}} \cdot v_{i}=0$ and $e^{k} \cdot v_{i}$ for $0 \leq k \leq d_{i}-1$ is a basis of V_{i}.

Let $\hat{G}=O(V)$ and $\mathfrak{g}=\mathfrak{s o}(V)$.
Let \mathfrak{a} be the subalgebra spanned by an $\mathfrak{s l}_{2}$-triple in \mathfrak{g}, say (h, e, f). Then $V=V_{1} \oplus \cdots \oplus V_{m}$, where V_{i} is an irreducible \mathfrak{a}-module of dimension d_{i}. From $\mathfrak{s l}_{2}$ theory, each V_{i} has a unique element v_{i} such that:
(1) $f \cdot v_{i}=0$;
(2) $h \cdot v_{i}=\left(-d_{i}+1\right) v_{i}$;
(3) $e^{d_{i}} \cdot v_{i}=0$ and $e^{k} \cdot v_{i}$ for $0 \leq k \leq d_{i}-1$ is a basis of V_{i}.

Let $M_{s}:=\operatorname{span}\left\{v_{j}: d_{j}=s\right\}$.

Let $\hat{G}=O(V)$ and $\mathfrak{g}=\mathfrak{s o}(V)$.
Let \mathfrak{a} be the subalgebra spanned by an $\mathfrak{s l}_{2}$-triple in \mathfrak{g}, say (h, e, f). Then $V=V_{1} \oplus \cdots \oplus V_{m}$, where V_{i} is an irreducible \mathfrak{a}-module of dimension d_{i}. From $\mathfrak{s l}_{2}$ theory, each V_{i} has a unique element v_{i} such that:
(1) $f \cdot v_{i}=0$;
(2) $h \cdot v_{i}=\left(-d_{i}+1\right) v_{i}$;
(3) $e^{d_{i}} \cdot v_{i}=0$ and $e^{k} \cdot v_{i}$ for $0 \leq k \leq d_{i}-1$ is a basis of V_{i}.

Let $M_{s}:=\operatorname{span}\left\{v_{j}: d_{j}=s\right\}$.
Theorem

$$
Z_{\hat{G}}(h, e, f) \quad \longrightarrow \quad \prod_{s \text { odd }} O\left(M_{s}\right) \times \prod_{s \text { even }} S p\left(M_{s}\right)
$$

is an isomorphism of groups.

For the explicit computation:

- For any odd s, find an element $g_{s} \in O\left(M_{s}\right)$ such that $\operatorname{det}\left(g_{s}\right)=-1$;

Theorem

$$
Z_{\hat{G}}(h, e, f) \quad \longrightarrow \quad \prod_{s \text { odd }} O\left(M_{s}\right) \times \prod_{s \text { even }} S p\left(M_{s}\right)
$$

is an isomorphism of groups.

For the explicit computation:

- For any odd s, find an element $g_{s} \in O\left(M_{s}\right)$ such that $\operatorname{det}\left(g_{s}\right)=-1$;
- Compute the preimage $\hat{g}_{s}:=1 \times \cdots \times 1 \times g_{s} \times 1 \times \cdots \times 1$ for any odd s;

Theorem

$$
Z_{\hat{G}}(h, e, f) \quad \longrightarrow \quad \prod_{s \text { odd }} O\left(M_{s}\right) \times \prod_{\text {seven }} S p\left(M_{s}\right)
$$

is an isomorphism of groups.

For the explicit computation:

- For any odd s, find an element $g_{s} \in O\left(M_{s}\right)$ such that $\operatorname{det}\left(g_{s}\right)=-1$;
- Compute the preimage $\hat{g}_{s}:=1 \times \cdots \times 1 \times g_{s} \times 1 \times \cdots \times 1$ for any odd s;
- Let M be the group generated by the \hat{g}_{s};

Theorem

$$
Z_{\hat{G}}(h, e, f) \quad \longrightarrow \quad \prod_{s \text { odd }} O\left(M_{s}\right) \times \prod_{s \text { even }} S p\left(M_{s}\right)
$$

is an isomorphism of groups.

For the explicit computation:

- For any odd s, find an element $g_{s} \in O\left(M_{s}\right)$ such that $\operatorname{det}\left(g_{s}\right)=-1$;
- Compute the preimage $\hat{g}_{s}:=1 \times \cdots \times 1 \times g_{s} \times 1 \times \cdots \times 1$ for any odd s;
- Let M be the group generated by the \hat{g}_{s};
- For $g \in M$, compute $\sigma_{g} \in Z_{G}(h, e, f)$ as $\sigma_{g}(x)=g \times g^{-1}$;

Theorem

$$
Z_{\hat{G}}(h, e, f) \quad \longrightarrow \quad \prod_{s \text { odd }} O\left(M_{s}\right) \times \prod_{s \text { even }} S p\left(M_{s}\right)
$$

is an isomorphism of groups.

For the explicit computation:

- For any odd s, find an element $g_{s} \in O\left(M_{s}\right)$ such that $\operatorname{det}\left(g_{s}\right)=-1$;
- Compute the preimage $\hat{g}_{s}:=1 \times \cdots \times 1 \times g_{s} \times 1 \times \cdots \times 1$ for any odd s;
- Let M be the group generated by the \hat{g}_{s};
- For $g \in M$, compute $\sigma_{g} \in Z_{G}(h, e, f)$ as $\sigma_{g}(x)=g \times g^{-1}$;
- Check whether $\sigma_{g} \in Z_{G}^{0}(h, e, f)$ to determine $Z_{G}(h, e, f) / Z_{G}^{0}(h, e, f)$.

Theorem

$$
Z_{\hat{G}}(h, e, f) \quad \longrightarrow \quad \prod_{s \text { odd }} O\left(M_{s}\right) \times \prod_{s \text { even }} S p\left(M_{s}\right)
$$

is an isomorphism of groups.

For the explicit computation:

- For any odd s, find an element $g_{s} \in O\left(M_{s}\right)$ such that $\operatorname{det}\left(g_{s}\right)=-1$;
- Compute the preimage $\hat{g}_{s}:=1 \times \cdots \times 1 \times g_{s} \times 1 \times \cdots \times 1$ for any odd s;
- Let M be the group generated by the \hat{g}_{s};
- For $g \in M$, compute $\sigma_{g} \in Z_{G}(h, e, f)$ as $\sigma_{g}(x)=g \times g^{-1}$;
- Check whether $\sigma_{g} \in Z_{G}^{0}(h, e, f)$ to determine $Z_{G}(h, e, f) / Z_{G}^{0}(h, e, f)$.
- In general, the component group is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{a}$, where a is the number of even integers appearing among the d_{i}.

Theorem

$$
Z_{\hat{G}}(h, e, f) \quad \longrightarrow \quad \prod_{s \text { odd }} O\left(M_{s}\right) \times \prod_{s \text { even }} S p\left(M_{s}\right)
$$

is an isomorphism of groups.

Exceptional Lie algebras

From now on, let \mathfrak{g} be a Lie algebra of type $G_{2}, F_{4}, E_{6}, E_{7}$ or E_{8}.
Nilpotent orbits of such Lie algebras where characterized by A. V.Alekseevskii (1978) and Sommers (1998). Moreover, R. Lawther and D. M. Testerman made some impressive hand computations of component groups (2011).

Exceptional Lie algebras

From now on, let \mathfrak{g} be a Lie algebra of type $G_{2}, F_{4}, E_{6}, E_{7}$ or E_{8}.
Nilpotent orbits of such Lie algebras where characterized by A.V.Alekseevskii (1978) and Sommers (1998). Moreover, R. Lawther and D. M. Testerman made some impressive hand computations of component groups (2011).
Summarizing, we have the following data:

Exceptional Lie algebras

From now on, let \mathfrak{g} be a Lie algebra of type $G_{2}, F_{4}, E_{6}, E_{7}$ or E_{8}.
Nilpotent orbits of such Lie algebras where characterized by A.V.Alekseevskii (1978) and Sommers (1998). Moreover, R. Lawther and D. M. Testerman made some impressive hand computations of component groups (2011).
Summarizing, we have the following data:

- List of all nilpotent orbits;

Exceptional Lie algebras

From now on, let \mathfrak{g} be a Lie algebra of type $G_{2}, F_{4}, E_{6}, E_{7}$ or E_{8}.
Nilpotent orbits of such Lie algebras where characterized by A.V.Alekseevskii (1978) and Sommers (1998). Moreover, R. Lawther and D. M. Testerman made some impressive hand computations of component groups (2011).
Summarizing, we have the following data:

- List of all nilpotent orbits;
- Isomorphism types of the component groups of the orbits;

Exceptional Lie algebras

From now on, let \mathfrak{g} be a Lie algebra of type $G_{2}, F_{4}, E_{6}, E_{7}$ or E_{8}.
Nilpotent orbits of such Lie algebras where characterized by A.V.Alekseevskii (1978) and Sommers (1998). Moreover, R. Lawther and D. M. Testerman made some impressive hand computations of component groups (2011).
Summarizing, we have the following data:

- List of all nilpotent orbits;
- Isomorphism types of the component groups of the orbits;
- Explicit computations of generators of component groups.

Exceptional Lie algebras

From now on, let \mathfrak{g} be a Lie algebra of type $G_{2}, F_{4}, E_{6}, E_{7}$ or E_{8}.
Nilpotent orbits of such Lie algebras where characterized by A.V.Alekseevskii (1978) and Sommers (1998). Moreover, R. Lawther and D. M. Testerman made some impressive hand computations of component groups (2011).
Summarizing, we have the following data:

- List of all nilpotent orbits;
- Isomorphism types of the component groups of the orbits;
- Explicit computations of generators of component groups.

Exceptional Lie algebras

From now on, let \mathfrak{g} be a Lie algebra of type $G_{2}, F_{4}, E_{6}, E_{7}$ or E_{8}.
Nilpotent orbits of such Lie algebras where characterized by A.V.Alekseevskii (1978) and Sommers (1998). Moreover, R. Lawther and D. M. Testerman made some impressive hand computations of component groups (2011).
Summarizing, we have the following data:

- List of all nilpotent orbits;
- Isomorphism types of the component groups of the orbits;
- Explicit computations of generators of component groups.

Our goal is to overcome limits of the last point, providing a unified strategy and developing computational methods to find generators for component groups.

Definition

A Lie algebra \mathfrak{g} is reductive if $\mathfrak{g}=\mathfrak{z g}(\mathfrak{g}) \oplus[\mathfrak{g}, \mathfrak{g}]$.

Definition

A Lie algebra \mathfrak{g} is reductive if $\mathfrak{g}=\mathfrak{z g}(\mathfrak{g}) \oplus[\mathfrak{g}, \mathfrak{g}]$.

Fix an $\mathfrak{s l}_{2}$-triple (h, e, f) and let:

- $\mathfrak{c}_{1}:=\mathfrak{z}_{\mathfrak{g}}(h, e, f):=\{x \in \mathfrak{g} \mid[h, x]=[e, x]=[f, x]=0\}$;
- $\hat{\mathfrak{c}}_{2}:=\mathfrak{z g}_{\mathfrak{g}}\left(\mathfrak{c}_{1}\right):=\left\{x \in \mathfrak{g} \mid[y, x]=0\right.$ for all $\left.y \in \mathfrak{c}_{1}\right\}$;
- $\mathfrak{c}_{2}:=\left[\hat{\mathfrak{c}}_{2}, \hat{\mathfrak{c}}_{2}\right]$.

Definition

A Lie algebra \mathfrak{g} is reductive if $\mathfrak{g}=\mathfrak{z g}(\mathfrak{g}) \oplus[\mathfrak{g}, \mathfrak{g}]$.

Fix an $\mathfrak{s l}_{2}$-triple (h, e, f) and let:

- $\mathfrak{c}_{1}:=\mathfrak{z}_{\mathfrak{g}}(h, e, f):=\{x \in \mathfrak{g} \mid[h, x]=[e, x]=[f, x]=0\} ;$
- $\hat{\mathfrak{c}}_{2}:=\mathfrak{z g}_{\mathfrak{g}}\left(\mathfrak{c}_{1}\right):=\left\{x \in \mathfrak{g} \mid[y, x]=0\right.$ for all $\left.y \in \mathfrak{c}_{1}\right\}$;
- $\mathfrak{c}_{2}:=\left[\hat{\mathfrak{c}}_{2}, \hat{\mathfrak{c}}_{2}\right]$.

Lemma

Any $\sigma \in Z_{G}(h, e, f)$ stabilizes $\mathfrak{c}_{1}, \mathfrak{c}_{2}, \hat{\mathfrak{c}}_{2}$.

Definition

A Lie algebra \mathfrak{g} is reductive if $\mathfrak{g}=\mathfrak{z g}(\mathfrak{g}) \oplus[\mathfrak{g}, \mathfrak{g}]$.

Fix an $\mathfrak{s l}_{2}$-triple (h, e, f) and let:

- $\mathfrak{c}_{1}:=\mathfrak{z}_{\mathfrak{g}}(h, e, f):=\{x \in \mathfrak{g} \mid[h, x]=[e, x]=[f, x]=0\} ;$
- $\hat{\mathfrak{c}}_{2}:=\mathfrak{z g}_{\mathfrak{g}}\left(\mathfrak{c}_{1}\right):=\left\{x \in \mathfrak{g} \mid[y, x]=0\right.$ for all $\left.y \in \mathfrak{c}_{1}\right\}$;
- $\mathfrak{c}_{2}:=\left[\hat{\mathfrak{c}}_{2}, \hat{\mathfrak{c}}_{2}\right]$.

Lemma

Any $\sigma \in Z_{G}(h, e, f)$ stabilizes $\mathfrak{c}_{1}, \mathfrak{c}_{2}, \hat{\mathfrak{c}}_{2}$.

For nilpotent orbits of the exceptional Lie algebras there are three distinct cases:
(1) \mathfrak{c}_{1} is trivial;

Definition

A Lie algebra \mathfrak{g} is reductive if $\mathfrak{g}=\mathfrak{z g}(\mathfrak{g}) \oplus[\mathfrak{g}, \mathfrak{g}]$.

Fix an $\mathfrak{s l}_{2}$-triple (h, e, f) and let:

- $\mathfrak{c}_{1}:=\mathfrak{z}_{\mathfrak{g}}(h, e, f):=\{x \in \mathfrak{g} \mid[h, x]=[e, x]=[f, x]=0\} ;$
- $\hat{\mathfrak{c}}_{2}:=\mathfrak{z g}_{\mathfrak{g}}\left(\mathfrak{c}_{1}\right):=\left\{x \in \mathfrak{g} \mid[y, x]=0\right.$ for all $\left.y \in \mathfrak{c}_{1}\right\}$;
- $\mathfrak{c}_{2}:=\left[\hat{\mathfrak{c}}_{2}, \hat{\mathfrak{c}}_{2}\right]$.

Lemma

Any $\sigma \in Z_{G}(h, e, f)$ stabilizes $\mathfrak{c}_{1}, \mathfrak{c}_{2}, \hat{\mathfrak{c}}_{2}$.

For nilpotent orbits of the exceptional Lie algebras there are three distinct cases:
(1) \mathfrak{c}_{1} is trivial;
(2) \mathfrak{c}_{1} has a trivial center, i.e. it is semisimple;

Definition

A Lie algebra \mathfrak{g} is reductive if $\mathfrak{g}=\mathfrak{z g}(\mathfrak{g}) \oplus[\mathfrak{g}, \mathfrak{g}]$.

Fix an $\mathfrak{s l}_{2}$-triple (h, e, f) and let:

- $\mathfrak{c}_{1}:=\mathfrak{z}_{\mathfrak{g}}(h, e, f):=\{x \in \mathfrak{g} \mid[h, x]=[e, x]=[f, x]=0\} ;$
- $\hat{\mathfrak{c}}_{2}:=\mathfrak{z g}_{\mathfrak{g}}\left(\mathfrak{c}_{1}\right):=\left\{x \in \mathfrak{g} \mid[y, x]=0\right.$ for all $\left.y \in \mathfrak{c}_{1}\right\}$;
- $\mathfrak{c}_{2}:=\left[\hat{\mathfrak{c}}_{2}, \hat{\mathfrak{c}}_{2}\right]$.

Lemma

Any $\sigma \in Z_{G}(h, e, f)$ stabilizes $\mathfrak{c}_{1}, \mathfrak{c}_{2}, \hat{\mathfrak{c}}_{2}$.

For nilpotent orbits of the exceptional Lie algebras there are three distinct cases:
(1) \mathfrak{c}_{1} is trivial;
(2) \mathfrak{c}_{1} has a trivial center, i.e. it is semisimple;
(3) \mathfrak{c}_{1} has a non-trivial center.

\mathfrak{c}_{1} is trivial

Observe that in this case $Z_{G}(h, e, f)$ is a finite group since its Lie algebra is zero.

Consider $Z_{G}(h)=\{g \in G \mid g(h)=h\}$. This group is connected and its Lie algebra is the reductive Lie algebra defined as follows:

$$
\mathfrak{z}_{\mathfrak{g}}(h)=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Psi} \mathfrak{g}_{\alpha}
$$

where $\Psi=\{\alpha \in \Phi \mid \alpha(h)=0\}$. Fix a base $\Pi=\left\{\beta_{1}, \ldots, \beta_{m}\right\}$ and a canonical generating set $\left\{x_{ \pm \beta_{i}}, h_{\beta_{i}}\right\}$ and let W_{0} be the Weyl group of Ψ.

\mathfrak{c}_{1} is trivial

Then

$$
Z_{G}(h)=\bigsqcup_{w \in W_{0}} U H w U_{w}
$$

where

$$
U=\left\{e^{s_{1} a d x_{\beta_{1}}} \cdots e^{s_{m} a d x_{\beta_{m}}} \text { for } s_{1}, \ldots, s_{m} \in \mathbb{C}\right\}
$$

H is a maximal torus of the form $\left\{h_{1}\left(t_{1}\right) \cdots h_{l}\left(t_{l}\right) \mid t_{1}, \ldots, t_{l} \in \mathbb{C}^{*}\right\}$

$$
\begin{aligned}
& h_{i}(t)=w_{\beta_{i}}(t) w_{\beta_{i}}(1)^{-1}, w_{\beta_{i}}(t)=e^{\operatorname{tad} x_{\beta_{i}}} e^{-t^{-1} a d x_{-\beta_{i}}} e^{\operatorname{tad} x_{\beta_{i}}} \\
& U_{w}=\left\{e^{u_{i_{1}} a d x_{\beta_{1}}} \cdots e^{u_{i_{m}} a d x_{\beta_{i m}}} \text { for } u_{1}, \ldots, u_{m} \in \mathbb{C}\right\}
\end{aligned}
$$

$\Psi_{w}=\left\{\beta_{i_{1}}, \ldots, \beta_{i_{n}}\right\} \subset \Phi$ the set of all β_{i} such that $w\left(\beta_{i}\right)$ is a negative root

\mathfrak{c}_{1} is trivial

Then

$$
Z_{G}(h)=\bigsqcup_{w \in W_{0}} U H w U_{w}
$$

where

$$
U=\left\{e^{s_{1} a d x_{\beta_{1}}} \cdots e^{s_{m} a d x_{\beta_{m}}} \text { for } s_{1}, \ldots, s_{m} \in \mathbb{C}\right\}
$$

H is a maximal torus of the form $\left\{h_{1}\left(t_{1}\right) \cdots h_{l}\left(t_{l}\right) \mid t_{1}, \ldots, t_{l} \in \mathbb{C}^{*}\right\}$

$$
\begin{aligned}
& h_{i}(t)=w_{\beta_{i}}(t) w_{\beta_{i}}(1)^{-1}, w_{\beta_{i}}(t)=e^{\operatorname{tad} x_{\beta_{i}}} e^{-t^{-1} a d x_{-\beta_{i}}} e^{\operatorname{tad} x_{\beta_{i}}} \\
& U_{w}=\left\{e^{u_{i_{1}} a d x_{\beta_{1}}} \cdots e^{u_{i_{m}} a d x_{\beta_{i_{m}}}} \text { for } u_{1}, \ldots, u_{m} \in \mathbb{C}\right\}
\end{aligned}
$$

$\Psi_{w}=\left\{\beta_{i_{1}}, \ldots, \beta_{i_{n}}\right\} \subset \Phi$ the set of all β_{i} such that $w\left(\beta_{i}\right)$ is a negative root

At this point it suffices to set $g(e)=e$ for $g \in Z_{G}(h)$ and solve with respect to the indeterminates $s_{1}, \ldots, s_{m}, t_{1}, \ldots, t_{l}, u_{1}, \ldots, u_{m}$.

\mathfrak{c}_{1} is semisimple

Set $\mathfrak{c}:=\mathfrak{c}_{1} \oplus \mathfrak{c}_{2}$ and $\mathfrak{c}^{\perp}=\{x \in \mathfrak{g} \mid k(x, y)=0$ for all $y \in \mathfrak{c}\}$.
The Killing form is non-degenerate, being \mathfrak{g} semisimple. This implies that $\mathfrak{c} \cap \mathfrak{c}^{\perp}=0$, hence $\mathfrak{g}=\mathfrak{c} \oplus \mathfrak{c}^{\perp}$.

\mathfrak{c}_{1} is semisimple

Set $\mathfrak{c}:=\mathfrak{c}_{1} \oplus \mathfrak{c}_{2}$ and $\mathfrak{c}^{\perp}=\{x \in \mathfrak{g} \mid k(x, y)=0$ for all $y \in \mathfrak{c}\}$.
The Killing form is non-degenerate, being \mathfrak{g} semisimple. This implies that $\mathfrak{c} \cap \mathfrak{c}^{\perp}=0$, hence $\mathfrak{g}=\mathfrak{c} \oplus \mathfrak{c}^{\perp}$.

Lemma
$\left[\mathfrak{c}, \mathfrak{c}^{\perp}\right] \subset \mathfrak{c}^{\perp}$, i.e. \mathfrak{c}^{\perp} is a \mathfrak{c}-module.
\mathfrak{c}_{1} is semisimple

Let $\sigma \in Z_{G}(h, e, f)$.

\mathfrak{c}_{1} is semisimple

Let $\sigma \in Z_{G}(h, e, f)$.

- $\left.\sigma\right|_{\mathfrak{c}_{1}} \in \operatorname{Aut}\left(\mathfrak{c}_{1}\right)=\operatorname{Aut}\left(\mathfrak{c}_{1}\right)^{0} \rtimes \Gamma_{\mathfrak{c}_{1}}=Z_{G}(h, e, f)^{0} \rtimes \Gamma_{\mathfrak{c}_{1}}$. In other words, we can find $\phi \in Z_{G}(h, e, f)^{0}$ such that $\left.\sigma \phi\right|_{\mathfrak{c}_{1}} \in \Gamma_{\mathfrak{c}_{1}}$.

\mathfrak{c}_{1} is semisimple

Let $\sigma \in Z_{G}(h, e, f)$.

- $\left.\sigma\right|_{\mathfrak{c}_{1}} \in \operatorname{Aut}\left(\mathfrak{c}_{1}\right)=\operatorname{Aut}\left(\mathfrak{c}_{1}\right)^{0} \rtimes \Gamma_{\mathfrak{c}_{1}}=Z_{G}(h, e, f)^{0} \rtimes \Gamma_{\mathfrak{c}_{1}}$. In other words, we can find $\phi \in Z_{G}(h, e, f)^{0}$ such that $\left.\sigma \phi\right|_{\mathfrak{c}_{1}} \in \Gamma_{\mathfrak{c}_{1}}$.
- $\left.\sigma\right|_{\mathfrak{c}_{2}} \in Z_{\left.\text {Aut(} \mathfrak{c}_{2}\right)}(h, e, f)$ but its Lie algebra is $\mathfrak{z}_{\mathfrak{c}_{2}} \subset \mathfrak{z}_{\mathfrak{g}} \cap \mathfrak{c}_{2}=0$. Hence $Z_{\text {Aut }\left(\mathfrak{c}_{2}\right)}(h, e, f)$ is finite.

\mathfrak{c}_{1} is semisimple

Let $\sigma \in Z_{G}(h, e, f)$.

- $\left.\sigma\right|_{\mathfrak{c}_{1}} \in \operatorname{Aut}\left(\mathfrak{c}_{1}\right)=\operatorname{Aut}\left(\mathfrak{c}_{1}\right)^{0} \rtimes \Gamma_{\mathfrak{c}_{1}}=Z_{G}(h, e, f)^{0} \rtimes \Gamma_{\mathfrak{c}_{1}}$. In other words, we can find $\phi \in Z_{G}(h, e, f)^{0}$ such that $\left.\sigma \phi\right|_{\mathfrak{c}_{1}} \in \Gamma_{\mathfrak{c}_{1}}$.
- $\left.\sigma\right|_{\mathfrak{c}_{2}} \in Z_{\left.\text {Aut(} \mathfrak{c}_{2}\right)}(h, e, f)$ but its Lie algebra is $\mathfrak{z}_{\mathfrak{c}_{2}} \subset \mathfrak{z}_{\mathfrak{g}} \cap \mathfrak{c}_{2}=0$. Hence $Z_{\text {Aut }\left(\mathfrak{c}_{2}\right)}(h, e, f)$ is finite.

\mathfrak{c}_{1} is semisimple

Let $\sigma \in Z_{G}(h, e, f)$.

- $\left.\sigma\right|_{\mathfrak{c}_{1}} \in \operatorname{Aut}\left(\mathfrak{c}_{1}\right)=\operatorname{Aut}\left(\mathfrak{c}_{1}\right)^{0} \rtimes \Gamma_{\mathfrak{c}_{1}}=Z_{G}(h, e, f)^{0} \rtimes \Gamma_{\mathfrak{c}_{1}}$. In other words, we can find $\phi \in Z_{G}(h, e, f)^{0}$ such that $\left.\sigma \phi\right|_{\mathfrak{c}_{1}} \in \Gamma_{\mathfrak{c}_{1}}$.
- $\left.\sigma\right|_{\mathfrak{c}_{2}} \in Z_{\left.\text {Aut(} \mathfrak{c}_{2}\right)}(h, e, f)$ but its Lie algebra is $\mathfrak{z}_{\mathfrak{c}_{2}} \subset \mathfrak{z}_{\mathfrak{g}} \cap \mathfrak{c}_{2}=0$. Hence $Z_{\text {Aut }\left(\mathfrak{c}_{2}\right)}(h, e, f)$ is finite.

All this implies that we can determine a finite set U of automorphisms of \mathfrak{c} that stabilize \mathfrak{c}_{1} and \mathfrak{c}_{2} and such that extending these automorphisms to all of \mathfrak{g} gives at least an element for each component of $Z_{G}(h, e, f)$.

It turns out that an arbitrary element τ of U can be extended in a finite number of ways.

\mathfrak{c}_{1} is semisimple

Let $V=\mathfrak{c}^{\perp}$ and write $V=V_{1} \oplus \cdots \oplus V_{m}$, where V_{i} are the irreducible c-modules. V can be assumed to be multiplicity free.

\mathfrak{c}_{1} is semisimple

Let $V=\mathfrak{c}^{\perp}$ and write $V=V_{1} \oplus \cdots \oplus V_{m}$, where V_{i} are the irreducible c-modules. V can be assumed to be multiplicity free.

- Fix a canonical generating set $\left\{h_{i}, x_{i}, y_{i}\right.$ for $\left.1 \leq i \leq s\right\}$ and compute the maximal vectors $\left\{v_{1}, \ldots, v_{m}\right\}$, i.e. vectors such that $x_{j} \cdot v_{i}=0$ for all j.

\mathfrak{c}_{1} is semisimple

Let $V=\mathfrak{c}^{\perp}$ and write $V=V_{1} \oplus \cdots \oplus V_{m}$, where V_{i} are the irreducible c-modules. V can be assumed to be multiplicity free.

- Fix a canonical generating set $\left\{h_{i}, x_{i}, y_{i}\right.$ for $\left.1 \leq i \leq s\right\}$ and compute the maximal vectors $\left\{v_{1}, \ldots, v_{m}\right\}$, i.e. vectors such that $x_{j} \cdot v_{i}=0$ for all j.
- Consider the canonical generating set $\left\{\tau\left(h_{i}\right), \tau\left(x_{i}\right), \tau\left(y_{i}\right)\right.$ for $\left.1 \leq i \leq s\right\}$ and compute the maximal vectors $\left\{w_{1}, \ldots, w_{m}\right\}$.

\mathfrak{c}_{1} is semisimple

Let $V=\mathfrak{c}^{\perp}$ and write $V=V_{1} \oplus \cdots \oplus V_{m}$, where V_{i} are the irreducible c-modules. V can be assumed to be multiplicity free.

- Fix a canonical generating set $\left\{h_{i}, x_{i}, y_{i}\right.$ for $\left.1 \leq i \leq s\right\}$ and compute the maximal vectors $\left\{v_{1}, \ldots, v_{m}\right\}$, i.e. vectors such that $x_{j} \cdot v_{i}=0$ for all j.
- Consider the canonical generating set $\left\{\tau\left(h_{i}\right), \tau\left(x_{i}\right), \tau\left(y_{i}\right)\right.$ for $\left.1 \leq i \leq s\right\}$ and compute the maximal vectors $\left\{w_{1}, \ldots, w_{m}\right\}$.
- Fix i_{0} with $1 \leq i_{0} \leq m$ and define integers $\nu_{1}^{i_{0}}, \ldots, \nu_{s}^{i_{0}}$ by $h_{i} \cdot v_{i_{0}}=\nu_{i}^{i_{0}} v_{i_{0}}$.

\mathfrak{c}_{1} is semisimple

Let $V=\mathfrak{c}^{\perp}$ and write $V=V_{1} \oplus \cdots \oplus V_{m}$, where V_{i} are the irreducible c-modules. V can be assumed to be multiplicity free.

- Fix a canonical generating set $\left\{h_{i}, x_{i}, y_{i}\right.$ for $\left.1 \leq i \leq s\right\}$ and compute the maximal vectors $\left\{v_{1}, \ldots, v_{m}\right\}$, i.e. vectors such that $x_{j} \cdot v_{i}=0$ for all j.
- Consider the canonical generating set $\left\{\tau\left(h_{i}\right), \tau\left(x_{i}\right), \tau\left(y_{i}\right)\right.$ for $\left.1 \leq i \leq s\right\}$ and compute the maximal vectors $\left\{w_{1}, \ldots, w_{m}\right\}$.
- Fix i_{0} with $1 \leq i_{0} \leq m$ and define integers $\nu_{1}^{i_{0}}, \ldots, \nu_{s}^{i_{0}}$ by $h_{i} \cdot v_{i_{0}}=\nu_{i}^{i_{0}} v_{i_{0}}$.
- If there is a j_{0} such that $\tau\left(h_{i}\right) \cdot w_{j_{0}}=\nu_{i}^{i_{0}} w_{j_{0}}$ for $1 \leq i \leq s$ then the extension of τ has to map $v_{i_{0}} \rightarrow k_{i_{0}, j_{0}} w_{j_{0}}$. We get then a system of equations between generators of \mathfrak{g} in the indeterminates $k_{i_{0}, j_{0}}$.

\mathfrak{c}_{1} has non-trivial center

In this case we do not know what the possible restrictions of an element in $Z_{G}(h, e, f)$ to \mathfrak{c}_{1} can be. We proceed as follows:

\mathfrak{c}_{1} has non-trivial center

In this case we do not know what the possible restrictions of an element in $Z_{G}(h, e, f)$ to \mathfrak{c}_{1} can be. We proceed as follows:

- Compute \mathfrak{c}_{1} and then \mathfrak{c}_{2};

\mathfrak{c}_{1} has non-trivial center

In this case we do not know what the possible restrictions of an element in $Z_{G}(h, e, f)$ to \mathfrak{c}_{1} can be. We proceed as follows:

- Compute \mathfrak{c}_{1} and then \mathfrak{c}_{2};
- Compute the finite group of diagram automorphisms $Z_{\left.\text {Aut(} c_{2}\right)}(h, e, f)$ as before;

\mathfrak{c}_{1} has non-trivial center

In this case we do not know what the possible restrictions of an element in $Z_{G}(h, e, f)$ to \mathfrak{c}_{1} can be. We proceed as follows:

- Compute \mathfrak{c}_{1} and then \mathfrak{c}_{2};
- Compute the finite group of diagram automorphisms $Z_{\left.\text {Aut(} \mathfrak{c}_{2}\right)}(h, e, f)$ as before;
- Try to extend these morphisms directly from \mathfrak{c}_{2} to \mathfrak{g};

\mathfrak{c}_{1} has non-trivial center

In this case we do not know what the possible restrictions of an element in $Z_{G}(h, e, f)$ to \mathfrak{c}_{1} can be. We proceed as follows:

- Compute \mathfrak{c}_{1} and then \mathfrak{c}_{2};
- Compute the finite group of diagram automorphisms $Z_{\left.\text {Aut(} \mathfrak{c}_{2}\right)}(h, e, f)$ as before;
- Try to extend these morphisms directly from \mathfrak{c}_{2} to \mathfrak{g};
- We need to use different strategies case by case.

