THREE SURPRISES ABOUT PERMUTATION REPRESENTATIONS

Martin Gallauer

3 June 2024

4. COMBINATORIAL ASPECTS

- 2. ALGEBRAIC,
- 3. GEOMETRIC AND
- J. GLOMETRIC AND

PARADIGM

G

objects

- · study objects with action, ideally classify them
- · draw conclusions about G

PARADIGM

G

 \bigcirc

objects

- · study objects with action, ideally classify them
- · draw conclusions about G

WARM-UP

G

E

sets

•
$$S = \coprod G/H_i$$

PARADIGM

G

 \triangleright

objects

- · study objects with action, ideally classify them
- · draw conclusions about G

WARM-UP

G

sets

·
$$S = \coprod G/H_i$$
, $G/H \cong G/H' \iff (H) = (H')$

PARADIGM

G

 \bigcirc

objects

- study objects with action, ideally classify them
- · draw conclusions about G

WARM-UP

G

sets

•
$$S = \coprod G/H_i$$
, $G/H \cong G/H' \iff (H) = (H')$

· learn about subgroups up to conjugacy

kG-modules

 kG-modules

G

k-vector spaces

DEFINITION

permutation module = k(S)

kG-MODULES

DEFINITION

permutation module = k(S)

'Most' kG-modules are \underline{not} permutation modules.

kG-MODULES

DEFINITION

permutation module = k(S)

'Most' kG-modules are <u>not</u> permutation modules.

CHARACTERISTIC 0

- · semisimple
- character theory and applications

kG-MODULES

DEFINITION

permutation module = k(S)

'Most' kG-modules are <u>not</u> permutation modules.

CHARACTERISTIC *p*

- · wild classification problem
- . ?

NOTE

S indecomposable $\neq k(S)$ indecomposable

DEFINITION

p-permutation module = direct summand of k(S)

DEFINITION

p-permutation module = direct summand of k(S)

Still, 'most' kG-modules are <u>not</u> p-permutation modules.

DEFINITION

p-permutation module = direct summand of k(S)

Still, 'most' kG-modules are <u>not</u> p-permutation modules.

THEOREM (BALMER-G.)

Every *kG*-module admits a finite *p*-permutation resolution.

DEFINITION

p-permutation module = direct summand of k(S)

Still, 'most' kG-modules are <u>not</u> p-permutation modules.

THEOREM (BALMER-G.)

Every *kG*-module admits a finite *p*-permutation resolution.

$$0 \to P_n \to \cdots \to P_0 \to M \to 0$$

DEFINITION

p-permutation module = direct summand of k(S)

Still, 'most' kG-modules are <u>not</u> p-permutation modules.

THEOREM (BALMER-G.)

Every kG-module admits a finite p-permutation resolution.

$$0 \rightarrow P_n \rightarrow \cdots \rightarrow P_0 \rightarrow M \rightarrow 0$$

COROLLARY

$$D^b(kG) = \langle p\text{-permutation modules} \rangle^{\triangle}$$

PERMUTATION GENERATION

$$\mathrm{D}^b_{R ext{-perf}}(\mathit{RG}) \stackrel{?}{=} \langle \mathsf{permutation} \; \mathsf{modules} \rangle^{\triangle, \natural}$$

PERMUTATION GENERATION

$$\mathrm{D}^b_{R ext{-perf}}(RG)\stackrel{?}{=}\langle \mathrm{permutation\ modules} \rangle^{\triangle, \natural}$$

COROLLARY (ROUQUIER, MATHEW, BALMER-G.)

Permutation generation holds for R regular.

G ⊘ R-modules

PERMUTATION GENERATION

$$D_{R\text{-perf}}^b(RG) \stackrel{?}{=} \langle \text{permutation modules} \rangle^{\triangle, \natural}$$

COROLLARY (ROUQUIER, MATHEW, BALMER-G.)

Permutation generation holds for R regular.

REMARK

In fact, for any *R*, the right-hand side is characterized by the cohomological singularity.

PERMUTATION GENERATION

$$\mathrm{D}^b_{R ext{-perf}}(RG)\stackrel{?}{=}\langle \mathrm{permutation\ modules} \rangle^{\triangle, \natural}$$

COROLLARY (ROUQUIER, MATHEW, BALMER-G.)

Permutation generation holds for *R* regular.

QUESTION (MATHEW)

When does permutation generation hold for spectral coefficients?

WEAKER CLASSIFICATION PROBLEM

$$X \sim y \qquad \iff \qquad \langle X \rangle = \langle y \rangle$$

WEAKER CLASSIFICATION PROBLEM FOR TT-CATEGORIES

$$x \sim y \iff \langle x \rangle^{\triangle, \, \natural, \otimes} = \langle y \rangle^{\triangle, \, \natural, \otimes}$$

WEAKER CLASSIFICATION PROBLEM FOR TT-CATEGORIES

$$x \sim y \qquad \Longleftrightarrow \qquad \langle x \rangle^{\triangle, \natural, \otimes} = \langle y \rangle^{\triangle, \natural, \otimes}$$

DICTIONARY

$$\begin{array}{c|cccc}
T & \triangle, & \otimes & 0 & 1 \\
R & + & \cdot & 0 & 1
\end{array}$$

WEAKER CLASSIFICATION PROBLEM FOR TT-CATEGORIES

$$x \sim y \qquad \Longleftrightarrow \qquad \langle x \rangle^{\triangle, \natural, \otimes} = \langle y \rangle^{\triangle, \natural, \otimes}$$

DICTIONARY

$$\begin{array}{c|cccc}
T & \triangle, & \otimes & 0 & 1 \\
R & + & \cdot & 0 & 1
\end{array}$$

SPECTRUM (BALMER)

 $\operatorname{Spc}(T)$ space encoding tt-ideals in T

BACK TO kG-MODULES

BACK TO *kG***-MODULES**

THEOREM (BENSON-CARLSON-RICKARD)

$$\operatorname{Spc}(\operatorname{D^b}(kG)) = \operatorname{Spec^h}(\operatorname{H}^*(G;k))$$

BACK TO **kG-modules**

THEOREM (BENSON-CARLSON-RICKARD)

$$\operatorname{Spc}(D^{\operatorname{b}}(kG)) = \operatorname{Spec}^{\operatorname{h}}(H^*(G; k)) =: V_G$$

BACK TO RG-MODULES

THEOREM (BENSON-CARLSON-RICKARD)

$$\operatorname{Spc}(\operatorname{D^b}(kG)) = \operatorname{Spec^h}(\operatorname{H}^*(G;k)) \; =: V_G$$

$$G = D_8$$

DERIVING PERMUTATION MODULES

DERIVING PERMUTATION MODULES

DERIVING PERMUTATION MODULES

$\mathcal{K}(G) =$

- perfect complexes of cohomological Mackey functors (Thévenaz-Webb)
- geometric Artin motives (Voevodsky)
- compact spectral modules over constant Mackey functor (..., Fuhrmann)

SECOND SURPRISE

TRANSLATION

$$\operatorname{Spc}(\mathfrak{K}(G)) \ \longleftrightarrow \ V_G$$

SECOND SURPRISE

THEOREM (BALMER-G.)

Complete description of ${\rm Spc}({\mathcal K}(G)).$ In particular,

$$\operatorname{Spc}(\mathfrak{K}(G))=\amalg_{(H)_p}V_{G/\!\!/H}$$

SECOND SURPRISE

THEOREM (BALMER-G.)

Complete description of $\operatorname{Spc}(\mathfrak{K}(G))$. In particular,

$$\operatorname{Spc}(\mathfrak{K}(G))=\amalg_{(H)_p}V_{G/\!\!/H}$$

$$G = D_8$$

p-permutation dimension

DEFINITION

- $\cdot \operatorname{ppdim}(M) = \min \operatorname{minimal length} \operatorname{of} p\operatorname{-permutation} \operatorname{resolution}$
- $\cdot \operatorname{ppdim}_{k}(G) = \max{\operatorname{ppdim}(M)}$

p-permutation dimension

DEFINITION

- ppdim(M) = minimal length of p-permutation resolution
- $\operatorname{ppdim}_{R}(G) = \max{\operatorname{ppdim}(M)}$

$$G=C_5$$

$$k \rightarrow m_{1}$$

$$k \rightarrow kC_{5} \rightarrow k \oplus kC_{5} \rightarrow m_{2}$$

$$k \rightarrow kC_{5} \rightarrow k \oplus kC_{5} \rightarrow kC_{5} \rightarrow m_{3}$$

$$k \rightarrow kC_{5} \rightarrow m_{4}$$

$$kC_{5} \rightarrow m_{5}$$

THIRD SURPRISE

THEOREM IN PROGRESS (G.-WALSH)

Let $G = C_n$ with p-Sylow C_{p^r} .

- 1. $\operatorname{ppdim}_k(C_n) = \operatorname{ppdim}_k(C_{p^r})$.
- 2. $\operatorname{ppdim}(\oplus M_i) = \max{\{\operatorname{ppdim}(M_i)\}}.$
- 3. Every indecomposable admits a minimal *p*-permutation resolution 'of the form above'.

THIRD SURPRISE

THEOREM IN PROGRESS (G.-WALSH)

Let $G = C_n$ with p-Sylow C_{p^r} .

- 1. $\operatorname{ppdim}_k(C_n) = \operatorname{ppdim}_k(C_{p^r})$.
- 2. $\operatorname{ppdim}(\oplus M_i) = \max{\{\operatorname{ppdim}(M_i)\}}$.
- 3. Every indecomposable admits a minimal *p*-permutation resolution 'of the form above'.

$$G = C_9$$

THIRD SURPRISE

THEOREM IN PROGRESS (G.-WALSH)

Let $G = C_n$ with p-Sylow C_{p^r} .

- 1. $\operatorname{ppdim}_{R}(C_{n}) = \operatorname{ppdim}_{R}(C_{p^{r}}).$
- $2. \ \operatorname{ppdim}(\oplus M_i) = \max\{\operatorname{ppdim}(M_i)\}.$
- 3. Every indecomposable admits a minimal *p*-permutation resolution 'of the form above'.

$$G = C_9$$

$$m_1 \rightarrow m_9 \rightarrow m_9 \oplus m_3 \rightarrow m_4$$

 $m_3 \rightarrow m_9 \rightarrow m_9 \oplus m_1 \rightarrow m_4$

$$\operatorname{ppdim}_{k}(C_{9}) = 2$$

COMPUTATIONS

COROLLARY

$$\operatorname{ppdim}_{k}(C_{p})=p-2$$

COMPUTATIONS

COROLLARY

$$\operatorname{ppdim}_{k}(C_{p})=p-2$$

$\operatorname{ppdim}_k(C_{p^r})$

r	2	3	5	7	11	13	17	 31
1	0	1	3	5	9	11	15	29
2	1	2	5	7	13	15	21	39
3	1	3	7	11	19	23	31	59
4	2	4	9	13	23	28	37	71
5	2	5	11	17	29	35	47	89
6	2	6	13	19	33	40	?	?
7	3	7	15	23	39	47	?	?
8	3	8	17	25	?	?	?	?

