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GROUPS AND THEIR ACTIONS

PARADIGM
G O objects
- study objects with action, ideally classify them
- draw conclusions about G

WARM-UP

G O sets

* S=]IG/H; G/H=G/H"+= (H) = (H")

- learn about subgroups up to conjugacy
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RG-MODULES

G O k-vector spaces

DEFINITION

CHARACTERISTIC D

- wild classification problem
. ?
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FIRST SUPRISE

DEFINITION
p-permutation module = direct summand of k(S)

THEOREM (BALMER-G.)
Every RG-module admits a finite p-permutation resolution.

0—=Py—:--—=Pp—=M—=0

COROLLARY

DP(kG) = (p-permutation modules)®
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PERMUTATION GENERATION

D per(RG) Z (permutation modules)2

COROLLARY (ROUQUIER, MATHEW, BALMER-G.)
Permutation generation holds for R regular.

REMARK
In fact, for any R, the right-hand side is characterized by the
cohomological singularity.




WHAT ABOUT MORE GENERAL COEFFICIENTS?

G Q) R-modules

PERMUTATION GENERATION

D per(RG) Z (permutation modules)2

COROLLARY (ROUQUIER, MATHEW, BALMER-G.)
Permutation generation holds for R regular.

QUESTION (MATHEW)
When does permutation generation hold for spectral
coefficients?
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TT-GEOMETRY

WEAKER CLASSIFICATION PROBLEM FOR TT-CATEGORIES

X~y e (AR = (y)hhe
DICTIONARY
T|AL ® 0 1
R + 0 1

SPECTRUM (BALMER)
Spc(T) space encoding tt-ideals in T
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BACK TO RG-MODULES

THEOREM (BENSON-CARLSON-RICKARD)

G=Dg

Spc(DP(RG)) = Spec (H*(G; k) =: Vg

@8

N
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DERIVING PERMUTATION MODULES

G-sets ——— RG-mod

l l

K(G) := KP(p-perm(G; kR)) — DP(RG)

K(G) =
- perfect complexes of cohomological Mackey functors
(Thévenaz-Webb)
- geometric Artin motives (Voevodsky)

- compact spectral modules over constant Mackey functor
(..., Fuhrmann)
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p-PERMUTATION DIMENSION

DEFINITION

- ppdim(M) = minimal length of p-permutation resolution
* ppdimg(G) = max{ppdim(M)}

G=0Cs

kR — my

kR — RCs — R @ RCs — m»

R — RCs — R @ RCs — RCs — m3
kR — RCs — m,

kC5 — Ms



THIRD SURPRISE

THEOREM IN PROGRESS (G.-WALSH)
Let G = C, with p-Sylow Cpr.

1. ppdimy,(Cy) = ppdimg(Cpr).
2. ppdim(®M;) = max{ppdim(M;)}.

3. Every indecomposable admits a minimal p-permutation
resolution ‘of the form above



THIRD SURPRISE

THEOREM IN PROGRESS (G.-WALSH)
Let G = C, with p-Sylow Cpr.

1. ppdimy,(Cy) = ppdimg(Cpr).
2. ppdim(®M;) = max{ppdim(M;)}.

3. Every indecomposable admits a minimal p-permutation
resolution ‘of the form above

G=0C




THIRD SURPRISE

THEOREM IN PROGRESS (G.-WALSH)
Let G = C, with p-Sylow Cpr.

1. ppdimy,(Cy) = ppdimg(Cpr).

2. ppdim(®M;) = max{ppdim(M;)}.

3. Every indecomposable admits a minimal p-permutation

resolution ‘of the form above’.

G=0C

(N

ms — Mg — Mg B M1 — My

@/(D\ mi — Mg — Mg P M3 — My

® ppdimy(Co) =2
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COMPUTATIONS

COROLLARY

ppdimy(Cp) =p —2

ppdimy(Cpr)
r Pla 3 5 7 11 13 17 31
1 0 1 3 9 11 15 29
2 1 2 5 13 15 21 39
3 1 3 7 11 19 23 31 59
4 2 4 9 13 23 28 37 71
5 2 5 11 17 29 35 47 89
6 2 6 13 19 33 40 2 ?
7 3 7 15 23 39 47 2 ?
8 3.8 17 25 72 2?2 2 ?




THANK YOU!
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