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The talk is divided into four sections.

1) Isomorphisms

2) Automorphisms

3) Torsion elements

4) Sylow like theorems

The last subsections in section 3 and 4 (marked by **) have not or only partially
been presented - due to time reasons.
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Notations

G finite group

RG group ring of G over the commutative ring R

U(RG) group of units of RG

V(RG) group of normalized units of RG, i.e.

V(RG) =

{ ∑
g∈G

ugg ∈ U(RG) :
∑
g∈G

ug = 1

}
In other words, V(RG) consists of the units of augmentation 1.
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A basic question concerning group rings is the following.

Which properties of G are determined by its group ring RG?

This question may be investigated with respect to each coefficient ring R.

In this talk integral group rings ZG are considered.

Moreover G denotes a finite group, if not other stated.

Because G lives naturally in the units of RG, ZG rsp. it is natural to expect
answers to the basic question if the unit group U(ZG) is considered. There the
normalized units V (ZG) , i.e. the units of augmentation 1 contain all informations.
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Basic notions and results on torsion units of ZG

• Units of the form g ∈ G are called trival units of V (ZG).

• Central torsion units of V (ZG) are trivial units.

• The order of a torsion subgroup of V (ZG) divides |G|.
• A torsion subgroup H of V (ZG) is called a group basis if it consists of

linearly independent elements and generates ZG as ring. In this situation we
write ZG = ZH.

• H is a group basis iff |H| = |G|.
• If H is a group basis of ZG and h ∈ H. Then the sum over the conjugates of
h in H is called a class sum.
The class sums of a group basis form a Z - basis of the centre of ZG.

• If H and G are group bases then their class sums coincide. The
correspondence is compatible with the power map on the classes.

Most of these fundamental facts are due to G. Higman (1940) and
S. D. Berman (1953). The last one is due to G. Glauberman and
D.S.Passman. .
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The isomorphism problem

IP ZG ∼= ZH =⇒ G ∼= H?

IP appears first in G.Higman’s thesis 1940.

It has been again formulated by R.Brauer in his lectures on modern mathematics
(Problem 2*) 1963.

H.Zassenhaus stated three conjectures on torsion subgroups of ZG in the
seventies of the last century.

The second one, denoted by ZP2, says that all group bases of ZG are conjugate
within QG. This provides a strong positive answer to IP.
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Positive Results

IP has an affirmative answer for

• G abelian (G.Higman 1940)

• G metabelian (A.Whitcomb 1968)

• G a p-group , G nilpotent (K.W.Roggenkamp-L.L.Scott 1987, A.Weiss 1987)

• ZG determines the chief series of G.
In particular all group bases of ZG have the same composition factors.
(Ki., R.Lyons, R.Sandling, D.Teague 1990)
Among other it follows that IP is valid for simple groups and their
automorphism groups.
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On the way to a counterexample to IP

The normalizer problem NP is the question whether in the units of a group ring a
group basis X is normalized only by the obvious units, i.e. by central units and by
X.

1995 M.Mazur discovered for the semidirect product X = G ·C∞ of a finite group
G with the infinite cyclic group C∞ – acting on G via an automorphism τ of G –
a connection between the normalizer problem and isomorphisms of group rings.
Denote such a semidirect prduct by Xτ then

RXτ
∼= RXid

provided no prime divisor of |G| is invertible in the commutative ring R and τ is
given by conjugation with a unit normalizing G in RG,

whileas

Xτ
∼= X

iff τ is an inner automorphism of G.



On the way to a counterexample to IP

The normalizer problem NP is the question whether in the units of a group ring a
group basis X is normalized only by the obvious units, i.e. by central units and by
X.

1995 M.Mazur discovered for the semidirect product X = G ·C∞ of a finite group
G with the infinite cyclic group C∞ – acting on G via an automorphism τ of G –
a connection between the normalizer problem and isomorphisms of group rings.
Denote such a semidirect prduct by Xτ then

RXτ
∼= RXid

provided no prime divisor of |G| is invertible in the commutative ring R and τ is
given by conjugation with a unit normalizing G in RG,

whileas

Xτ
∼= X

iff τ is an inner automorphism of G.



Counterexample ctd

K.W.Roggenkamp and A.Zimmermann constructed for a group ring RG with
semilocal coefficient ring

R = Zπ(G) =
⋂

p∈π(G)

Zp and |G| = 27 · r2 · q2 with odd primes r 6= q,

a counterexample to the normalizer problem (published also 1995).

Here π(G) denotes the set of primes dividing |G| and Zp is the local subring of Q in which all

primes except p are invertible.

So by Mazur’s construction this yields a counterexample to the isomorphism
problem for R(G · C∞)

but this is not a counterexample to NP for ZG ( M.Hertweck 1997).
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The Counterexample

The counterexample to IP for R = Z and a finite group G has been constructed
by M.Hertweck in his thesis 1997 (published 2001). The group G has order

221 · 9728

and is 4 - step abelian.

It has a normal metabelian Sylow 97 - subgroup Q,
with Fitting subgroup F (G) = Q× CP (Q), where P denotes a Sylow 2 -
subgroup, G/F (G) is metabelian of order 210.

Remark. Hertweck constructs - as first step for his counterexample to IP - a
counterexample to NP for integral group rings. By Mazur’s result this yields a
counterexample to IP for integral groups of infinite groups. For the
counterexample for IP for ZG with finite G Hertweck uses several nontrivial
modifications of Mazur’s construction.
It is unknown whether NP necessarily plays a role for a counterexample to IP.
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Automorphisms, Notations and Definitions

AutZG = ring automorphisms of ZG.
AutnZG = ring automorphisms which preserve augmentation, also called
normalized automorphisms.

Let X be a group basis of ZG. Then τ ∈ AutX induces uniquely a normalized
ring automorphism also denoted by τ

τ ∈ AutZG is called central, if it fixes the centre of ZG elementwise.

If for each group basis X of ZG each σ ∈ AutnZG is the product of a group
automorphism of X and a central automorphism of AutZG then we say that

AUT holds for ZG.

Note

ZP2 =⇒ AUT

ZP2 ⇐⇒ AUT+ IP.
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Results on AUT

ZP2 and therefore AUT holds for the following classes of finite groups.

• Nilpotent groups (Roggenkamp-Scott, Weiss 1989)

• Symmetric groups (G.Peterson 1976)

• PSL(2, p) (F.Bleher, G.Hiss, Ki. 1995)

• 18 of the 26 sporadic simple groups (F.Bleher, Ki. 2000)

• Finite simple groups of Lie type of small rank and all finite simple groups
with abelian Sylow subgroups (F.Bleher 1999)

• Finite Coxeter groups (F.Bleher, M.Geck, Ki. 1997)
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Results on AUT ctd
However counterexamples to AUT have been constructed by K.W.Roggenkamp
and L.L.Scott (1988), L.Klingler (1991), P.F.Blanchard and M.Hertweck. The
smallest ones have order 96 and are due to P.F.Blanchard (1997) and M.Hertweck
(2003).

The most important positive result is the following

F* - Theorem, Roggenkamp-Scott 1988

Assume that G has a normal p - subgroup N with CG(N) ⊂ N then AUT is valid
for ZG.

The condition CG(N) ⊂ N is equivalent to that the generalized Fitting subgroup
F ∗(G) is a p - group. Thus the name.

Roggenkamp and Scott did not publish a complete proof of the F ∗ - theorem. In
the mean time a complete proof of it may be puzzled together out of a series of
papers (2002-2016) of M.Hertweck, one of them jt. with me.
A summary is given in
M.Hertweck, Units of p - power order in principal blocks of p - constrained groups,
J.of Alg. 464, (2016) 348-356.
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G×G - argument

AUT is not really weaker than ZP2.

Proposition (Ki. 1987)

Let C be a class of finite groups closed under direct products. Assume that AUT
holds for ZG for every G ∈ C. Then ZP2 holds for every G ∈ C.

The condition that F ∗(G) is a p-group is closed under direct products. That for a
group basis X of ZG the generalized Fitting subgroup F ∗(X) is a p-group if, and
only if, F ∗(G) is a p - group follows from the fact that group bases have the same
normal subgroup lattice and corresponding normal subgroups have the same order.
Thus the G×G - argument may be applied.

Theorem

ZP2 holds for ZG provided F ∗(G) is a p - group.
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IP is
”
almost “true

Corollary 1

Let G be an arbitrary finite group then ZP2 (and thus also the isomorphism
problem IP) has a positive answer for the integral group ring Z(FpG ·G) of the
semidirect product FpG ·G.

Here FpG denotes the additive group of the modular group ring and G acts just by

multiplication on it.

Corollary 2

Let G be an arbitrary finite group then

Z(FpG ·G) ∼= Z(FpH ·H) =⇒ G ∼= H.

Note that ZG is a subring and a quotient of Z(FpG ·G). A group basis H of ZG
sits in a group basis of Z(FpG ·G) if, and only if, H ∼= G.
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Applications of the F ∗ - theorem

Theorem (Ki.1991)

Suppose that G/F (G) is abelian. Then IP holds for G and Sylow subgroups of
group bases are conjugate within QG.
In particular IP holds for supersoluble groups.

With similar methods it follows that IP is valid for

• Nilpotent-by- abelian p - group -by- abelian p′ - group. (Hertweck 1992)

• Frobenius or 2-Frobenius groups (Ki. 1991).



The Zassenhaus Conjectures revisited

ZP1 1974

Every torsion unit of V (ZG) is conjugate within QG to a trivial unit.

ZP2
Every group basis of ZG is conjugate within QG to a subgroup of G.

ZP3

Every finite subgroup H ≤ V (ZG) is conjugate within QG to a subgroup of G.

K. W. Roggenkamp and L. L. Scott constructed the first counterexample to AUT
1988 and thus one to ZP2 and ZP3. Hertweck’s counterexample to IP even shows
that conjugacy cannot be replaced by isomorphism.

Theorem F.Eisele and L-Margolis (2018)

There is a metabelian group G of order 27 · 32 · 5 · 72 · 192 and u ∈ V (ZG) such
that u is not conjugate within QG to an element of G.
The unit has order 7 · 19.
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ZP revisited ctd

Note that to all Zassenhaus conjectures metabelian counterexamples have been
constructed.
They are no longer conjectures but still problems for classes of group rings of
finite groups.

But ZP3 and so all three Zassenhaus conjectures hold for nilpotent groups
(A.Weiss 1991) or if
G ∼= C ·X with C and X cyclic of coprime order (A.Valenti 1994, C.Polcino
Milies-J.Ritter-S.K.Sehgal 1984).

ZP1 holds if G is cyclic-by-abelian (M.Caicedo, L.Margolis and A.del Rio 2013),
for all groups of order ≤ 143 (A.Bächle, A.Herman, A.Konovalov, L.Margolis,
G.Singh (2017)),
for certain PSL(2, q), q ∈ {8, 9, 11, 13, 16, 19, 23, 25, 32} or q a Fermat or
Mersenne prime
(Luthar-Passi, Hertweck, Ki.-Konovalov, Bächle-Margolis,
Margolis-delRio-Serrano)



ZP revisited ctd

Note that to all Zassenhaus conjectures metabelian counterexamples have been
constructed.
They are no longer conjectures but still problems for classes of group rings of
finite groups.

But ZP3 and so all three Zassenhaus conjectures hold for nilpotent groups
(A.Weiss 1991) or if
G ∼= C ·X with C and X cyclic of coprime order (A.Valenti 1994, C.Polcino
Milies-J.Ritter-S.K.Sehgal 1984).

ZP1 holds if G is cyclic-by-abelian (M.Caicedo, L.Margolis and A.del Rio 2013),
for all groups of order ≤ 143 (A.Bächle, A.Herman, A.Konovalov, L.Margolis,
G.Singh (2017)),
for certain PSL(2, q), q ∈ {8, 9, 11, 13, 16, 19, 23, 25, 32} or q a Fermat or
Mersenne prime
(Luthar-Passi, Hertweck, Ki.-Konovalov, Bächle-Margolis,
Margolis-delRio-Serrano)



ZP revisited ctd

Note that to all Zassenhaus conjectures metabelian counterexamples have been
constructed.
They are no longer conjectures but still problems for classes of group rings of
finite groups.

But ZP3 and so all three Zassenhaus conjectures hold for nilpotent groups
(A.Weiss 1991) or if
G ∼= C ·X with C and X cyclic of coprime order (A.Valenti 1994, C.Polcino
Milies-J.Ritter-S.K.Sehgal 1984).

ZP1 holds if G is cyclic-by-abelian (M.Caicedo, L.Margolis and A.del Rio 2013),
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Margolis-delRio-Serrano)



Open results, questions
• IP for groups of odd order

• IP for 3-step abelian groups

• IP , ZP2 rsp. for groups with Op′(G) = 1 for some prime p.

L.L.Scott (1992) calls it plausible that ZP2 might be valid for such groups
and points out that these groups deserve special attention since every finite
group is a subdirect product of groups of this form.

Are there suitable replacements for ZP 1 and ZP3 ?
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Replacements for ZP1

Several questions have been posed which are weaker than ZP1, e.g.
SP Does the order of a torsion element of V (ZG) coincide with the order of a
group element of G (the so-called Spectrum question SP) ?
PQ Have V (ZG) and G the same prime graph ?

Question OG. (Ki. 2007) Given a torsion unit u ∈ V (ZG). Is there a finite group
H containing G such that u is conjugate within QH to an element of G?

Proposition (A.del Rio - L.Margolis 2017)

Let u ∈ V (ZG) be a torsion unit. Consider G in the natural way (acting by
multiplication on itself) as a subgroup of the symmetric group SG of degree |G|.
Then the following are equivalent.

• Positive answer to Question OG

• u is conjugate to an element of G in QSG.
• (Conjecture of A.A.Bovdi 1987) Let u =

∑
g∈G zgg ∈ ZG. Then for each

m ∈ N with m 6= o(u) the coefficients of elements of order m of u sum up to
zero , i.e. ∑

g∈G,o(g)=m

zg = 0.
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p - elements

For elements of prime power order no counterexample to ZP1 is known.

Theorem (F.Eisele-L.Margolis 2022)

ZP1 holds for units of V (ZG) of prime order p provided a Sylow p - subgroup of
G has order p.

Known results on Bovdi’s conjecture

Bovdi’s conjecture holds provided

• G is metabelian. (M.Dokuchaev-S.K.Sehgal 1994)

• G soluble, all Sylow subgroups are abelian and u has prime power order.
(S.O.Juriaans 1994)

• G arbitrary , u has prime order p.
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Further Results **

The following two results are joint work with A. Bächle and M. Serrano ( 2019).

Proposition 1 (Bächle, Ki. - Serrano)

Suppose that G has a nilpotent Hall subgroup N such that G/N is abelian. Then
there is a group H containing G as subgroup such that ZP1 holds for ZH.

Note. In the special case when the Hall subgroup is a p-group M.Hertweck showed
2006 that then even ZP1 holds.
The statement of Proposition 1 is slightly stronger than an affirmative answer to
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Suppose that G has a normal Sylow p - subgroup P such that Bovdi’s conjecture
has an affirmative answer for ZG/P . Then it has also an affirmative answer for
ZG.

It is an immediate corollary of Proposition 2 that Question OG has a positive
solution provided G is supersoluble. A bit more general we get that it behaves well
under supersoluble Hall extensions.

Corollary

Suppose that G has a supersoluble normal Hall - subgroup H such that Bovdi’s
conjecture has an affirmative answer for ZG/H. Then it has also an affirmative
answer for ZG.

Note. With respect to supersoluble groups ZP1 is still open.
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The counterexamples G of F. Eisele and L. Margolis to ZP1 are metabelian. They
have even an abelian normal Hall subgroup A such that G/A is abelian.

So the result of M. Dokuchaev and S. K. Sehgal shows that for these groups
Bovdi’s conjecture holds and Proposition 1 that these groups may be even
embedded into larger groups for which ZP1 holds.
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Sylow in V (ZG)

A Sylowlike theorem in V (ZG) may have the following form

Let H be a finite p - subgroup of V (ZG). Then H is conjugate within QG to a
subgroup of G.

So G would determine the finite p - subgroups of V (ZG).

This is an open question. It may be considered as a replacement of ZP1 and ZP3.
Thus it also called p - ZC3.

Of course one could also try to prove as a first goal weaker statements ( so-called
weak Sylow like theorems), weak means isomorphism instead of conjugacy
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The first case, G a p - group

The results of Roggenkamp-Scott and Weiss on ZG for G a p - group establish a
Sylow like theorem in this case. Conjugacy is in this case even given in Zp(G).

Is there any chance to get a similar result over modular group algebras ?

It was a long standing question (the so-called modular isomorphism problem)
whether the modular group algebra of a p - group over Fp determines the group
up to isomorphism. This has been recently solved.

Theorem (D.Garcia-Lucas, L.Margolis, A.del Rio 2021)

There are non-isomorphic groups of order 29 such that their group algebras over
the field of two elements 2 are isomorphic.
In particular there are 2-blocks which do not determine their defect group up to
isomorphism.



The first case, G a p - group

The results of Roggenkamp-Scott and Weiss on ZG for G a p - group establish a
Sylow like theorem in this case. Conjugacy is in this case even given in Zp(G).

Is there any chance to get a similar result over modular group algebras ?

It was a long standing question (the so-called modular isomorphism problem)
whether the modular group algebra of a p - group over Fp determines the group
up to isomorphism. This has been recently solved.

Theorem (D.Garcia-Lucas, L.Margolis, A.del Rio 2021)

There are non-isomorphic groups of order 29 such that their group algebras over
the field of two elements 2 are isomorphic.
In particular there are 2-blocks which do not determine their defect group up to
isomorphism.



The first case, G a p - group

The results of Roggenkamp-Scott and Weiss on ZG for G a p - group establish a
Sylow like theorem in this case. Conjugacy is in this case even given in Zp(G).

Is there any chance to get a similar result over modular group algebras ?

It was a long standing question (the so-called modular isomorphism problem)
whether the modular group algebra of a p - group over Fp determines the group
up to isomorphism. This has been recently solved.

Theorem (D.Garcia-Lucas, L.Margolis, A.del Rio 2021)

There are non-isomorphic groups of order 29 such that their group algebras over
the field of two elements 2 are isomorphic.
In particular there are 2-blocks which do not determine their defect group up to
isomorphism.



The first case, G a p - group

The results of Roggenkamp-Scott and Weiss on ZG for G a p - group establish a
Sylow like theorem in this case. Conjugacy is in this case even given in Zp(G).

Is there any chance to get a similar result over modular group algebras ?

It was a long standing question (the so-called modular isomorphism problem)
whether the modular group algebra of a p - group over Fp determines the group
up to isomorphism. This has been recently solved.

Theorem (D.Garcia-Lucas, L.Margolis, A.del Rio 2021)

There are non-isomorphic groups of order 29 such that their group algebras over
the field of two elements 2 are isomorphic.
In particular there are 2-blocks which do not determine their defect group up to
isomorphism.



Some known results on Sylow like results **

A Sylowlike theorem holds for V (ZG) provided

• G is nilpotent-by-nilpotent (M. Dokuchaev-S. O. Juriaans 1996)

• G is a Frobenius group (M.Dokuchaev, S.O,Juriaans, C.Polcino
Milies,V.Bovdi, M.Hertweck, L.Margolis and Ki. , between 1996 and 2017 )

and with respect to specific primes, if

• G/Op′(G) has a normal Sylow p - subgroup (A. Weiss 1993)

• G = PSL(2, rf ) if p 6= r or p = r = 2 or f = 1. (M.Hertweck - C.Höfert -
Ki. 2009, L.Margolis 2016)

A weak Sylowlike theorem holds, if

• G has cyclic Sylow p - subgroups. (Ki. for p=2 2007, Hertweck for p odd
2008)

• 2 - subgroups of V (ZG) are isomorphic to subgroups of G if Sylow 2 -
subgroups of G are abelian, quaternion or dihedral. (Bächle-Ki. 2011, Ki.
2015, Margolis 2017)
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Characters and Sylow numbers **

For a finite group H denote by X(H) its ordinary character table and by Spec(H)
its spectral table, i.e. the character table including the head line.

Question G.Navarro 2003
Let G and U be finite groups with the same ordinary character table, i.e.
X(G) = X(U). Do for each prime p the number of Sylow subgroups coincide, i.e.
np(G) = np(U) ?

Note that ZG ∼= ZU =⇒ Spec(G) = Spec(U) =⇒ X(G) = X(H).

Thus results concerning character tables yield results for group rings.
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Sylow for group bases of ZG **

So it is a natural question to consider Sylow like theorems between group bases of
integral group rings.

Question Sylow for group bases

Let U be a finite p - subgroup of a group basis X of V (ZG). Is U conjugate
within QG to a subgroup of G?
Have G and X the same number of Sylow p - subgroups ?



Properties reflected by character tables **

The ordinary character table X(G) determines

• the normal subgroup lattice of G (G.Glauberman)

• the chief series of G (Ki. 1989)

• whether G has abelian Sylow subgroups and if so their isomorphism type (Ki.
and R.Sandling 1989)

The ordinary character table does not determine the orders of the representatives
of the conjugacy classes but the primes dividing the order of a representative
(G.Higman).



Properties reflected by character tables **

The ordinary character table X(G) determines

• the normal subgroup lattice of G (G.Glauberman)

• the chief series of G (Ki. 1989)

• whether G has abelian Sylow subgroups and if so their isomorphism type (Ki.
and R.Sandling 1989)

The ordinary character table does not determine the orders of the representatives
of the conjugacy classes but the primes dividing the order of a representative
(G.Higman).



Properties reflected by character tables **

The ordinary character table X(G) determines

• the normal subgroup lattice of G (G.Glauberman)

• the chief series of G (Ki. 1989)

• whether G has abelian Sylow subgroups and if so their isomorphism type (Ki.
and R.Sandling 1989)

The ordinary character table does not determine the orders of the representatives
of the conjugacy classes but the primes dividing the order of a representative
(G.Higman).



Some results on Sylow numbers **

G.Navarro and N.Rizo 2017
If G is p - soluble then

Spec(G) = Spec(H) =⇒ np(G) = np(H).

Ki. and I.Köster 2017
If G is nilpotent-by-nilpotent or if G is a Frobenius group, then

X(G) = X(H) =⇒ np(G) = np(H)∀p.



Sylow for group bases ctd **

As one may expect with respect to integral group rings more is known

Theorem

Let G be a p - constrained group and let q be a prime not dividing Op′(G). Let X
be a group basis of ZG.

a) A q - subgroup U of X is conjugate within QG to a subgroup of G
(Ki.-Roggenkamp 1993).

b) np(G) = np(X)∀p (Ki.-Köster 2017).

Part a) is an application of the F ∗ - theorem.

p - soluble groups are p - constrained.

Thus a Sylow like theorem for group bases holds for integral group rings of finite
soluble groups.



Thank you for your attention
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