The lower central series of the unit group of an integral group ring

Sugandha Maheshwary

msugandha@iitr.ac.in

June 3, 2024

The lower central series of an integral group ring

Notation

The lower central series of an integral group ring

Notation

- G: a group
$\sqsupset \mathbb{Z} G$: integral group ring of $G,\left\{\sum_{g \in G} \alpha_{g} g: \alpha_{g} \in \mathbb{Z}, g \in G\right\}$
$\square \mathcal{U}:=\mathcal{U}(\mathbb{Z} G)$: unitgrouр of $\mathbb{Z} G$
$\square \epsilon: \mathbb{Z} G \rightarrow \mathbb{Z}$: aldamentation bomomorphism $(g \rightarrow 1)$.
$\square \epsilon(u)= \pm 1, \square \in \mathcal{Z}$.
$\square \mathcal{V}:=\mathcal{V}(\mathbb{Z} G)$: subgroup formed by elements of \mathcal{U} of augmentation 1, the subgroup of normalized units in \mathcal{U}.

The lower central series of an integral group ring

Notation

\square G: a group
$\square \mathbb{Z} G$: integral group ring of $G,\left\{\sum_{g \in G} \alpha_{g} g: \alpha_{g} \in \mathbb{Z}, g \in G\right\}$
$\square \mathcal{U}:=\mathcal{U}(\mathbb{Z} G):$ unitgraupof $\mathbb{Z} G$
$\square \in: \mathbb{Z} G \rightarrow \mathbb{Z}$: algmentation nomomorphism $(g \rightarrow 1)$.
$\square \mathcal{V}:=\mathcal{V}(\mathbb{Z} G)$: subgroup fopmed by elements of \mathcal{U} of augmentation 1, the subgroup of nornalized units in \mathcal{U}.

The lower central series of an integral group ring

Notation

\square G: a group
$\square \mathbb{Z} G$: integral group ring of $G,\left\{\sum_{g \in G} \alpha_{g} g: \alpha_{g} \in \mathbb{Z}, g \in G\right\}$
$\square \mathcal{U}:=\mathcal{U}(\mathbb{Z} G)$: unit group of $\mathbb{Z} G$
$\square \in: \mathbb{Z} G \rightarrow \mathbb{Z}:$ adgmentation homomorphism $(g \rightarrow 1)$.

- $\mathcal{V}:=\mathcal{V}(\mathbb{Z} G)$: subgroup formed by elements of \mathcal{U} of augmentation 1, the subgroup of nornalized units in \mathcal{U}.

The lower central series of an integral group ring Notation
\square G: a group
$\square \mathbb{Z} G$: integral group ring of $G,\left\{\sum_{g \in G} \alpha_{g} g: \alpha_{g} \in \mathbb{Z}, g \in G\right\}$
$\square \mathcal{U}:=\mathcal{U}(\mathbb{Z} G)$: unit group of $\mathbb{Z} G$
$\square \epsilon: \mathbb{Z} G \rightarrow \mathbb{Z}$: augmentation homomorphism $(g \rightarrow 1)$.

The lower central series of an integral group ring Notation
\square G: a group
$\square \mathbb{Z} G$: integral group ring of $G,\left\{\sum_{g \in G} \alpha_{g} g: \alpha_{g} \in \mathbb{Z}, g \in G\right\}$
$\square \mathcal{U}:=\mathcal{U}(\mathbb{Z} G)$: unit group of $\mathbb{Z} G$
$\square: \mathbb{Z} G \rightarrow \mathbb{Z}$: augmentation homomorphism $(g \rightarrow 1)$.
$\square \epsilon(u)= \pm 1, u \in \mathcal{U}$.
$\mathcal{V}:=\mathcal{V}(\mathbb{Z} G)$: subgroup formed by elements of \mathcal{U} of augmentation 1, the subgroup of normalized units in \mathcal{U}.

The lower central series of an integral group ring Notation
\square G: a group
$\square \mathbb{Z} G$: integral group ring of $G,\left\{\sum_{g \in G} \alpha_{g} g: \alpha_{g} \in \mathbb{Z}, g \in G\right\}$
$\square \mathcal{U}:=\mathcal{U}(\mathbb{Z} G)$: unit group of $\mathbb{Z} G$
$\square \epsilon: \mathbb{Z} G \rightarrow \mathbb{Z}$: augmentation homomorphism $(g \rightarrow 1)$.
$\square \epsilon(u)= \pm 1, u \in \mathcal{U}$.
$\square \mathcal{V}:=\mathcal{V}(\mathbb{Z} G)$: subgroup formed by elements of \mathcal{U} of augmentation 1, the subgroup of normalized units in \mathcal{U}.

The lower central series of an integral group ring Notation
\square G: a group
$\square \mathbb{Z} G$: integral group ring of $G,\left\{\sum_{g \in G} \alpha_{g} g: \alpha_{g} \in \mathbb{Z}, g \in G\right\}$
$\square \mathcal{U}:=\mathcal{U}(\mathbb{Z} G)$: unit group of $\mathbb{Z} G$
$\square \epsilon: \mathbb{Z} G \rightarrow \mathbb{Z}$: augmentation homomorphism $(g \rightarrow 1)$.
$\square \epsilon(u)= \pm 1, u \in \mathcal{U}$.
$\square \mathcal{V}:=\mathcal{V}(\mathbb{Z} G)$: subgroup formed by elements of \mathcal{U} of augmentation 1, the subgroup of normalized units in \mathcal{U}.
$\square \mathcal{U}= \pm \mathcal{V}$

The lower central series of an integral group ring

Notation

\square G: a group
$\square \mathbb{Z} G$: integral group ring of $G,\left\{\sum_{g \in G} \alpha_{g} g: \alpha_{g} \in \mathbb{Z}, g \in G\right\}$
$\square \mathcal{U}:=\mathcal{U}(\mathbb{Z} G)$: unit group of $\mathbb{Z} G$
$\square \epsilon: \mathbb{Z} G \rightarrow \mathbb{Z}$: augmentation homomorphism $(g \rightarrow 1)$.
$\square \epsilon(u)= \pm 1, u \in \mathcal{U}$.
$\square \mathcal{V}:=\mathcal{V}(\mathbb{Z} G)$: subgroup formed by elements of \mathcal{U} of augmentation 1, the subgroup of normalized units in \mathcal{U}.
$\square \mathcal{U}= \pm \mathcal{V}$

$$
\gamma_{1}(\mathcal{V})=\mathcal{V}, \gamma_{2}(\mathcal{V})=\mathcal{V}^{\prime}, \gamma_{i}(\mathcal{V})=\left[\gamma_{i-1}(\mathcal{V}), \mathcal{V}\right], i \geq 2
$$

The lower central series of \mathcal{V}

S. Maheshwary, [Mah21]

Problem 1
Classify the groups G for which $\mathcal{V}(\mathbb{Z} G)^{\prime}=G^{\prime}$.

Theorem
For a finite group $G, \mathcal{V}(\mathbb{Z} G)^{\prime}=G^{\prime}$, if and only if, G is an abelian group or a Hamiltonion 2-group.

The lower central series of \mathcal{V}

S. Maheshwary, [Mah21]

Problem 1

Classify the groups G for which $\mathcal{V}(\mathbb{Z} G)^{\prime}=G^{\prime}$.
 or a Hamiltonion 2-group.

The lower central series of \mathcal{V}

S. Maheshwary, [Mah21]

Problem 1

Classify the groups G for which $\mathcal{V}(\mathbb{Z} G)^{\prime}=G^{\prime}$.
\square The lower central series of G and $\mathcal{V}(\mathbb{Z} G)$ coincide $\Longleftrightarrow \mathcal{V}(\mathbb{Z} G)=G$. 2, 3, 4 or 6 , or $\mathrm{G}^{\circ}=Q_{8}$ 赈, where Edenotes an elementary abelian 2-group and Ω_{8} sis the quaternion group of order 8 .

For a finite group $G, \mathcal{V}(\mathbb{Z} G)^{\prime}=G^{\prime}$, if and only if, G is an abelian group or a Hamiltonion 2-group.

The lower central series of \mathcal{V}

S. Maheshwary, [Mah21]

Problem 1

Classify the groups G for which $\mathcal{V}(\mathbb{Z} G)^{\prime}=G^{\prime}$.
\square The lower central series of G and $\mathcal{V}(\mathbb{Z} G)$ coincide $\Longleftrightarrow \mathcal{V}(\mathbb{Z} G)=G$.

- If G is finite, $\mathcal{V}(\mathbb{Z} G)=G \Longleftrightarrow G$ is an abelian group of exponent $2,3,4$ or 6 , or $G=Q_{8} \times E$, where E denotes an elementary abelian 2-group and Q_{8} is the quaternion group of order 8.

For a finite group $G, \mathcal{V}(\mathbb{Z} G)^{\prime}=G^{\prime}$, if and only if, G is an abelian group or a Hamiltonion 2-group.

The lower central series of \mathcal{V}

S. Maheshwary, [Mah21]

Problem 1

Classify the groups G for which $\mathcal{V}(\mathbb{Z} G)^{\prime}=G^{\prime}$.
\square The lower central series of G and $\mathcal{V}(\mathbb{Z} G)$ coincide $\Longleftrightarrow \mathcal{V}(\mathbb{Z} G)=G$.

- If G is finite, $\mathcal{V}(\mathbb{Z} G)=G \Longleftrightarrow G$ is an abelian group of exponent $2,3,4$ or 6 , or $G=Q_{8} \times E$, where E denotes an elementary abelian 2-group and Q_{8} is the quaternion group of order 8.

Theorem

For a finite group $G, \mathcal{V}(\mathbb{Z} G)^{\prime}=G^{\prime}$, if and only if, G is an abelian group or a Hamiltonion 2-group.

The lower central series of \mathcal{V}

S. Maheshwary, [Mah21]

Theorem (Hartley,B. and Pickel, P.F. (1980))
Let G be a finite group G, then exactly one of the following occurs:
$\square G$ is abelian (and hence so is $\mathcal{V}(\mathbb{Z} G)$).
$\square G$ is a Hamiltonian-2 group and $\mathcal{V}(\mathbb{Z} G)=\{ \pm g \mid g \in G\}$
$\square \mathcal{V}(\mathbb{Z} G)$ contains a free subgroup of rank 2.
The problem remalisopen for àn arbitrary-group
This problem is motivatedhby an analogous question about the upper central series of $\mathcal{V}(\mathbb{Z} G)=$

The lower central series of \mathcal{V}

S. Maheshwary, [Mah21]

Theorem (Hartley,B. and Pickel, P.F. (1980))

Let G be a finite group G, then exactly one of the following occurs:
$\square G$ is abelian (and hence so is $\mathcal{V}(\mathbb{Z} G)$).
$\square G$ is a Hamiltonian-2 group and $\mathcal{V}(\mathbb{Z} G)=\{ \pm g \mid g \in G\}$.
$\square \mathcal{V}(\mathbb{Z} G)$ contains a free subgroup of rank 2.

The lower central series of \mathcal{V}

S. Maheshwary, [Mah21]

Theorem (Hartley,B. and Pickel, P.F. (1980))

Let G be a finite group G, then exactly one of the following occurs:
$\square G$ is abelian (and hence so is $\mathcal{V}(\mathbb{Z} G)$).
$\square G$ is a Hamiltonian-2 group and $\mathcal{V}(\mathbb{Z} G)=\{ \pm g \mid g \in G\}$.
$\square \mathcal{V}(\mathbb{Z} G)$ contains a free subgroup of rank 2.
The problem remains open for an arbitrary group.
This problem is motivatednby an analogous question about the upper central series of $\mathcal{V}(\mathbb{Z} G)$

The lower central series of \mathcal{V}

S. Maheshwary, [Mah21]

Theorem (Hartley,B. and Pickel, P.F. (1980))

Let G be a finite group G, then exactly one of the following occurs:
$\square G$ is abelian (and hence so is $\mathcal{V}(\mathbb{Z} G)$).
$\square G$ is a Hamiltonian-2 group and $\mathcal{V}(\mathbb{Z} G)=\{ \pm g \mid g \in G\}$.
$\square \mathcal{V}(\mathbb{Z} G)$ contains a free subgroup of rank 2.
The problem remains open for an arbitrary group.
This problem is motivated by an analogous question about the upper central series of $\mathcal{V}(\mathbb{Z} G)$.

The upper central series of \mathcal{V}

$$
\langle 1\rangle=\mathcal{Z}_{0}(\mathcal{V}) \subseteq \mathcal{Z}_{1}(\mathcal{V}) \subseteq \ldots \mathcal{Z}_{n}(\mathcal{V}) \subseteq \mathcal{Z}_{n+1}(\mathcal{V}) \subseteq \ldots
$$

\square the central height of \mathcal{V}, i.e., the smallest integer $n \geq 0$ such that $\mathcal{Z}_{n}(\mathcal{V})=\mathcal{Z}_{n+1}(\mathcal{V})$, is at most 2.
\square the central height of \mathcal{V} is 2 if , and only if, G is a Q^{*} group, i.e., if it has an element a of order 4 and an abelian subgroup H of index 2, which is not an elementary abelian 2-group, such that $G=\langle H, a\rangle, h^{a}=h^{-1}, \forall h \in H$ and $a^{2}=b^{2}$, for some $b \in H$.
\square In case the central height of \mathcal{V} is 2, then $\mathcal{Z}_{2}(\mathcal{V})=T \mathcal{Z}_{1}(\mathcal{V})$, where $T=\langle b\rangle \oplus E_{2}, E_{2}$ being an elementary abelian 2- group.

The upper central series of \mathcal{V}

$$
\langle 1\rangle=\mathcal{Z}_{0}(\mathcal{V}) \subseteq \mathcal{Z}_{1}(\mathcal{V}) \subseteq \ldots \mathcal{Z}_{n}(\mathcal{V}) \subseteq \mathcal{Z}_{n+1}(\mathcal{V}) \subseteq \ldots
$$

[AHP93, AP93] Let G be a finite group.
\square the central height of \mathcal{V}, i.e., the smallest integer $n \geq 0$ such that $\mathcal{Z}_{n}(\mathcal{V})=\mathcal{Z}_{n+1}(\mathcal{V})$, is at most 2.
the central height of \mathcal{V} is 2 if, and only if, G is a Q^{*} group, i.e., if it has an element a of order 4 and an abelian subgroup H of index 2, which is not an elementary abelian 2-group, such that $G=\langle H, a\rangle, h^{a}=h^{-1}, \forall h \in H$ and $a^{2}=b^{2}$, for some $b \in H$.
\square In case the central height of \mathcal{V} is 2, then $\mathcal{Z}_{2}(\mathcal{V})=T \mathcal{Z}_{1}(\mathcal{V})$, where $T=\langle b\rangle \oplus E_{2}, E_{2}$ being an elementary abelian 2-group.

The upper central series of \mathcal{V}

$$
\langle 1\rangle=\mathcal{Z}_{0}(\mathcal{V}) \subseteq \mathcal{Z}_{1}(\mathcal{V}) \subseteq \ldots \mathcal{Z}_{n}(\mathcal{V}) \subseteq \mathcal{Z}_{n+1}(\mathcal{V}) \subseteq \ldots
$$

[AHP93, AP93] Let G be a finite group.

\square the central height of \mathcal{V}, i.e., the smallest integer $n \geq 0$ such that $\mathcal{Z}_{n}(\mathcal{V})=\mathcal{Z}_{n+1}(\mathcal{V})$, is at most 2 .
\square the central height of \mathcal{V} is 2 if, and only if, G is a Q^{*} group, i.e., if it has an element a of order 4 and an abelian subgroup H of index 2, which is not an elementary abelian 2-group, such that $G=\langle H, a\rangle, h^{a}=h^{-1}, \forall h \in H$ and $a^{2}=b^{2}$, for some $b \in H$.
\square In case the central height of \mathcal{V} is 2, then $\mathcal{Z}_{2}(\mathcal{V})=T \mathcal{Z}_{1}(\mathcal{V})$, where $T=\langle b\rangle \oplus E_{2}, E_{2}$ being an elementary abelian 2-group.

The upper central series of \mathcal{V}

$$
\langle 1\rangle=\mathcal{Z}_{0}(\mathcal{V}) \subseteq \mathcal{Z}_{1}(\mathcal{V}) \subseteq \ldots \mathcal{Z}_{n}(\mathcal{V}) \subseteq \mathcal{Z}_{n+1}(\mathcal{V}) \subseteq \ldots
$$

[AHP93, AP93] Let G be a finite group.

\square the central height of \mathcal{V}, i.e., the smallest integer $n \geq 0$ such that $\mathcal{Z}_{n}(\mathcal{V})=\mathcal{Z}_{n+1}(\mathcal{V})$, is at most 2 .
\square the central height of \mathcal{V} is 2 if , and only if, G is a Q^{*} group, i.e., if it has an element a of order 4 and an abelian subgroup H of index 2 , which is not an elementary abelian 2-group, such that $G=\langle H, a\rangle, h^{a}=h^{-1}, \forall h \in H$ and $a^{2}=b^{2}$, for some $b \in H$.
> \square In case the central height of \mathcal{V} is 2, then $\mathcal{Z}_{2}(\mathcal{V})=T \mathcal{Z}_{1}(\mathcal{V})$, where $T=\langle b\rangle \oplus E_{2}, E_{2}$ being an elementary abelian 2- group.

The upper central series of \mathcal{V}

$$
\langle 1\rangle=\mathcal{Z}_{0}(\mathcal{V}) \subseteq \mathcal{Z}_{1}(\mathcal{V}) \subseteq \ldots \mathcal{Z}_{n}(\mathcal{V}) \subseteq \mathcal{Z}_{n+1}(\mathcal{V}) \subseteq \ldots
$$

[AHP93, AP93] Let G be a finite group.

\square the central height of \mathcal{V}, i.e., the smallest integer $n \geq 0$ such that $\mathcal{Z}_{n}(\mathcal{V})=\mathcal{Z}_{n+1}(\mathcal{V})$, is at most 2 .
the central height of \mathcal{V} is 2 if , and only if, G is a Q^{*} group, i.e., if it has an element a of order 4 and an abelian subgroup H of index 2, which is not an elementary abelian 2-group, such that $G=\langle H, a\rangle, h^{a}=h^{-1}, \forall h \in H$ and $a^{2}=b^{2}$, for some $b \in H$.
\square In case the central height of \mathcal{V} is 2, then $\mathcal{Z}_{2}(\mathcal{V})=T \mathcal{Z}_{1}(\mathcal{V})$, where $T=\langle b\rangle \oplus E_{2}, E_{2}$ being an elementary abelian 2 - group.

Cut-groups

\square If a group G is not a $Q *$ group, the central height of \mathcal{V} must be 0 or 1.

- Central height 0 âssentially means $\mathcal{Z}(\mathcal{V}(\mathbb{Z} G))=1$.
- Since $\mathcal{Z}(G) \mathscr{L}(\mathcal{V}(\mathbb{Z} G)$, the group G must have trivial centre and $\mathcal{Z}(G)=\mathcal{Z}(\mathcal{V}(\mathbb{Z} G))$.

Definition[BMP17]
In case $\mathcal{Z}(\mathcal{V}(\mathbb{Z} G))=\mathcal{Z}(G)$ i.e., all central units are trivial, G is called a cut-group, or a group with the cut-property.

So, for a finite group G, \mathcal{V} has central height zero if, andonly if, G is a cut-group with trivial centre.

Cut-groups

\square If a group G is not a $Q *$ group, the central height of \mathcal{V} must be 0 or 1.
\square Central height 0 ©̂ssentialtymeans $\mathcal{Z}(\mathcal{V}(\mathbb{Z} G))=1$.

- Since $\mathcal{Z}(G) \mathscr{L}(\mathcal{V}(\mathbb{Z} G))$, the group G must have trivial centre and $\mathcal{Z}(G)=\mathcal{Z}(\mathcal{V}(\mathbb{Z} G))$.

In case $\mathcal{Z}(\mathcal{V}(\mathbb{Z} G))=\mathbb{Z}(G)$ i.e., all central units are trivial, G is called a cut-group, or a group-with the cut-property.

So, for a finite group G, \mathcal{V} has central height zero if, and only if, G is a cut-group with trivial centre.

Cut-groups

\square If a group G is not a $Q *$ group, the central height of \mathcal{V} must be 0 or 1.
\square Central height 0 essentially means $\mathcal{Z}(\mathcal{V}(\mathbb{Z} G))=1$.

In case $\mathcal{Z}(\mathcal{V}(\mathbb{Z} G))=\mathcal{Z}(G)$ i.e., all central units are trivial, G is called a cut-group, or a group with the cut-property.

So, for a finite group G, ν has central height zero if and only if, G is a cut-group with trivial centre.

Cut-groups

\square If a group G is not a $Q *$ group, the central height of \mathcal{V} must be 0 or 1.
\square Central height 0 essentially means $\mathcal{Z}(\mathcal{V}(\mathbb{Z} G))=1$.
Since $\mathcal{Z}(G) \subseteq \mathcal{Z}(\mathcal{V}(\mathbb{Z} G))$, the group G must have trivial centre and $\mathcal{Z}(G)=\mathcal{Z}(\mathcal{V}(\mathbb{Z} G))$.

In case $\mathcal{Z}(\mathcal{V}(\mathbb{Z} G))=\mathcal{Z}(G)$ i.e., all central units are trivial, G is called a cut-group, or a group with the cut-property.
So, for a finite group G, \mathcal{V} has central height zero if and only if, G is a cut-group with trivial centre.

Cut-groups

\square If a group G is not a $Q *$ group, the central height of \mathcal{V} must be 0 or 1.
\square Central height 0 essentially means $\mathcal{Z}(\mathcal{V}(\mathbb{Z} G))=1$.
Since $\mathcal{Z}(G) \subseteq \mathcal{Z}(\mathcal{V}(\mathbb{Z} G))$, the group G must have trivial centre and $\mathcal{Z}(G)=\mathcal{Z}(\mathcal{V}(\mathbb{Z} G))$.

Definition[BMP17]

In case $\mathcal{Z}(\mathcal{V}(\mathbb{Z} G))=\mathcal{Z}(G)$ i.e., all central units are trivial, G is called a cut-group, or a group with the cut-property.

So, for a finite group G, \mathcal{V} has central height zero if, and only if, G is a cut-group with trivial centre.

Cut-groups

\square If a group G is not a $Q *$ group, the central height of \mathcal{V} must be 0 or 1.
\square Central height 0 essentially means $\mathcal{Z}(\mathcal{V}(\mathbb{Z} G))=1$.
Since $\mathcal{Z}(G) \subseteq \mathcal{Z}(\mathcal{V}(\mathbb{Z} G)$), the group G must have trivial centre and $\mathcal{Z}(G)=\mathcal{Z}(\mathcal{V}(\mathbb{Z} G))$.

Definition[BMP17]

In case $\mathcal{Z}(\mathcal{V}(\mathbb{Z} G))=\mathcal{Z}(G)$ i.e., all central units are trivial, G is called a cut-group, or a group with the cut-property.

So, for a finite group G, \mathcal{V} has central height zero if, and only if, G is a cut-group with trivial centre.

The lower central series of \mathcal{V}

S. Maheshwary, [Mah21]

Given a group G, when does lower central series of $\mathcal{V}(\mathbb{Z} G)$ stabilize?

- No bound is known forn the number of terms in the lower central series of $\mathcal{V}(\mathbb{Z} \mathbb{G})$.
- If $\mathcal{V}(\mathbb{Z} G)$ is nilpofert, the number of terms in both the upper and the lower centralseries coincide.
\square For a finite groun $G . \mathcal{V}(\mathbb{Z} G)$ is nilpetent, if and only if, G is either abelian or a Hamiltonion 2-group

The lower central series of \mathcal{V}

S. Maheshwary, [Mah21]

Problem 2

Given a group G, when does lower central series of $\mathcal{V}(\mathbb{Z} G)$ stabilize?

The lower central series of \mathcal{V}

S. Maheshwary, [Mah21]

Problem 2

Given a group G, when does lower central series of $\mathcal{V}(\mathbb{Z} G)$ stabilize?
No bound is known for the number of terms in the lower central series of $\mathcal{V}(\mathbb{Z} G)$.

If $V(\mathbb{Z} G)$ is nilpofent, ete number of terms in both the upper and the lower centralseries coincide.

The lower central series of \mathcal{V}

S. Maheshwary, [Mah21]

Problem 2

Given a group G, when does lower central series of $\mathcal{V}(\mathbb{Z} G)$ stabilize?
No bound is known for the number of terms in the lower central series of $\mathcal{V}(\mathbb{Z} G)$.
\square If $\mathcal{V}(\mathbb{Z} G)$ is nilpotent, the number of terms in both the upper and the lower central series coincide.

The lower central series of \mathcal{V}

S. Maheshwary, [Mah21]

Problem 2

Given a group G, when does lower central series of $\mathcal{V}(\mathbb{Z} G)$ stabilize?
No bound is known for the number of terms in the lower central series of $\mathcal{V}(\mathbb{Z} G)$.
\square If $\mathcal{V}(\mathbb{Z} G)$ is nilpotent, the number of terms in both the upper and the lower central series coincide.
\square For a finite group $G, \mathcal{V}(\mathbb{Z} G)$ is nilpotent, if and only if, G is either abelian or a Hamiltonion 2-group.

The termination of the lower central series of
$\mathcal{V}(\mathbb{Z} G)$

Theorem [SZ77]
$\mathcal{V}(\mathbb{Z} G)$ is nilpotent, if and-only if, G is
nilpotent and the torsion subgroup T of G satisfies one of the following conditions:
(i) T is central in G.
(ii) T is an abelian 2-group and for $x \in G, t \in T, x t x^{-1}=t^{ \pm 1}$
(iii) $T=E \times Q_{8}$, where E is an elementary abelian 2-group
and Q_{8} is the
quaternion group of order 8. Moreover, E is central in G and conjugation by $x \in G$, induces on Q_{8}, one of the four inner automorphisms.

If $\nu(\mathbb{Z} G)$ is not nilpotent, apparently, there is no answer for the stated problem.

The termination of the lower central series of $\mathcal{V}(\mathbb{Z} G)$

Theorem [SZ77]
$\mathcal{V}(\mathbb{Z} G)$ is nilpotent, if and only if, G is nilpotent and the torsion subgroup T of G satisfies one of the following conditions:
(i) T is central in G.
(ii) T is an abelian 2-group and for $x \in G, t \in T, x t x^{-1}=t^{ \pm 1}$.
(iii) $T=E \times Q_{8}$, where E is an elementary abelian 2-group and Q_{8} is the
quaternion group of order 8. Moreover, E is central in G and conjugation by $x \in G$, induces on Q_{8}, one of the four inner automorphisms.

If $\mathcal{V}(\mathbb{Z} G)$ is not nilpotent, apparently, there is no answer for the stated

The termination of the lower central series of $\mathcal{V}(\mathbb{Z} G)$

Theorem [SZ77]
$\mathcal{V}(\mathbb{Z} G)$ is nilpotent, if and only if, G is
nilpotent and the torsion subgroup T of G satisfies one of the following conditions:
(i) T is central in G.
(ii) T is an abelian 2-group and for $x \in G, t \in T, x t x^{-1}=t^{ \pm 1}$.
(iii) $T=E \times Q_{8}$, where E is an elementary abelian 2-group and Q_{8} is the
quaternion group of order 8. Moreover, E is central in G and conjugation by $x \in G$, induces on Q_{8}, one of the four inner automorphisms.

If $\mathcal{V}(\mathbb{Z} G)$ is not nilpotent, apparently, there is no answer for the stated problem.

The lower central series of \mathcal{V}

S. Maheshwary, [Mah21]

Problem 3

Given a group G, when is $\mathcal{V}(\mathbb{Z} G)$ residually nilpotent?

The residual nilpotence of $\mathcal{V}(\mathbb{Z} G)$

A group G is said to be residually nilpotent, if the nilpotent residue defined by

$$
\gamma_{\omega}(G):=\cap_{n} \gamma_{n}(G),
$$

i.e., the intersection of all members of the lower central series of the group, is trivial.

The lower central series of \mathcal{V}

S. Maheshwary, [Mah21]

Problem 3

Given a group G, when is $\mathcal{V}(\mathbb{Z} G)$ residually nilpotent?

The residual nilpotence of $\mathcal{V}(\mathbb{Z} G)$

A group G is said to be residually nilpotent, if the nilpotent residue defined by

$$
\gamma_{\omega}(G):=\cap_{n} \gamma_{n}(G),
$$

i.e., the intersection of all members of the lower central series of the group, is trivial.
$\square \mathcal{V}(\mathbb{Z} G)$ is rarely nilpotent.

The lower central series of \mathcal{V}

S. Maheshwary, [Mah21]

Problem 3

Given a group G, when is $\mathcal{V}(\mathbb{Z} G)$ residually nilpotent?

The residual nilpotence of $\mathcal{V}(\mathbb{Z} G)$

A group G is said to be residually nilpotent, if the nilpotent residue defined by

$$
\gamma_{\omega}(G):=\cap_{n} \gamma_{n}(G),
$$

i.e., the intersection of all members of the lower central series of the group, is trivial.

- $\mathcal{V}(\mathbb{Z} G)$ is rarely nilpotent.
\square This is due to the presence of non-abelian free groups inside $\mathcal{V}(\mathbb{Z} G)$.
But a free group is residually nilpotent. Therefore, the possibility of $\nu(\mathbb{Z} G)$ being residually nilpotent cannot be ruled out, even when it contains a free subgroup.

The lower central series of \mathcal{V}

S. Maheshwary, [Mah21]

Problem 3

Given a group G, when is $\mathcal{V}(\mathbb{Z} G)$ residually nilpotent?

The residual nilpotence of $\mathcal{V}(\mathbb{Z} G)$

A group G is said to be residually nilpotent, if the nilpotent residue defined by

$$
\gamma_{\omega}(G):=\cap_{n} \gamma_{n}(G),
$$

i.e., the intersection of all members of the lower central series of the group, is trivial.

- $\mathcal{V}(\mathbb{Z} G)$ is rarely nilpotent.
\square This is due to the presence of non-abelian free groups inside $\mathcal{V}(\mathbb{Z} G)$.
But a free group is residually nilpotent. Therefore, the possibility of $\mathcal{V}(\mathbb{Z} G)$ being residually nilpotent cannot be ruled out, even when it contains a free subgroup.

The residual nilpotence of $\mathcal{V}(\mathbb{Z} G)$

For a finite group G_{8} the group $\mathcal{V}(\mathbb{Z} G)$ is residually nilpotent, if and only if, G is a nilpotent group which is-a p-abelian group, i.e., the commutator subgroup G^{\prime} is a) p-group, for some prime p.
\square A little is known about the residual nilpotence of $\mathcal{P}(\mathbb{Z} G)$, when the underlying group teis not finite.

- Some work in this direction can be found in [Lic87], [MW82]

The residual nilpotence of $\mathcal{V}(\mathbb{Z} G)$

Theorem [MW82]

For a finite group G, the group $\mathcal{V}(\mathbb{Z} G)$ is residually nilpotent, if and only if, G is a nilpotent group which is a p-abelian group, i.e., the commutator subgroup G^{\prime} is a p-group, for some prime p.

A little is known about the residual nilpotence of $\mathcal{V}(\mathbb{Z} G)$, when the
underlying groupisis not finite.
Some work in this direction can be foundennicz7], [MW82]

The residual nilpotence of $\mathcal{V}(\mathbb{Z} G)$

Theorem [MW82]

For a finite group G, the group $\mathcal{V}(\mathbb{Z} G)$ is residually nilpotent, if and only if, G is a nilpotent group which is a p-abelian group, i.e., the commutator subgroup G^{\prime} is a p-group, for some prime p.

A little is known about the residual nilpotence of $\mathcal{V}(\mathbb{Z} G)$, when the underlying group G is not finite.
Some work in this direction can be found th [Lič77, [MW82]

The residual nilpotence of $\mathcal{V}(\mathbb{Z} G)$

Theorem [MW82]

For a finite group G, the group $\mathcal{V}(\mathbb{Z} G)$ is residually nilpotent, if and only if, G is a nilpotent group which is a p-abelian group, i.e., the commutator subgroup G^{\prime} is a p-group, for some prime p.
\square A little is known about the residual nilpotence of $\mathcal{V}(\mathbb{Z} G)$, when the underlying group G is not finite.
\square Some work in this direction can be found in [Lic77], [MW82]

Units and augmentation powers in integral group rings
Maheshwary, S. and Passi, I. B. S., J. Group Theory,[MP20]

Units and augmentation powers in integral group rings

Maheshwary, S. and Passi, I. B. S., J. Group Theory,[MP20]

\square The augmentation ideal $\Delta(G)$ of $\mathbb{Z} G$ induce a Δ-adic filtration of G, namely, the one given by its dimension subgroups defined by setting

$$
D_{n}(G)=G \cap\left(1+\Delta^{n}(G)\right), n=1,2,3, \ldots
$$

Units and augmentation powers in integral group rings

Maheshwary, S. and Passi, I. B. S., J. Group Theory,[MP20]

\square The augmentation ideal $\Delta(G)$ of $\mathbb{Z} G$ induce a Δ-adic filtration of G, namely, the one given by its dimension subgroups defined by setting

$$
D_{n}(G)=G \cap\left(1+\Delta^{n}(G)\right), n=1,2,3, \ldots
$$

This suggests natural extension to the full unit group $\mathcal{V}(\mathbb{Z} G)$ of normalized units, by setting

$$
\mathcal{V}_{n}(\mathbb{Z} G)=\mathcal{V}(\mathbb{Z} G) \cap\left(1+\Delta^{n}(G)\right), n=1,2,3 \ldots
$$

Units and augmentation powers in integral group rings

Maheshwary, S. and Passi, I. B. S., J. Group Theory,[MP20]

- The augmentation ideal $\Delta(G)$ of $\mathbb{Z} G$ induce a Δ-adic filtration of G, namely, the one given by its dimension subgroups defined by setting

$$
D_{n}(G)=G \cap\left(1+\Delta^{n}(G)\right), n=1,2,3, \ldots
$$

\square This suggests natural extension to the full unit group $\mathcal{V}(\mathbb{Z} G)$ of normalized units, by setting

$$
\mathcal{V}_{n}(\mathbb{Z} G)=\mathcal{V}(\mathbb{Z} G) \cap\left(1+\Delta^{n}(G)\right), n=1,2,3 \ldots
$$

$\square\left\{\mathcal{V}_{n}(\mathbb{Z} G)\right\}_{n \geq 1}$ is a central series in $\mathcal{V}(\mathbb{Z} G)$. For every $n \geq 1$,

$$
\gamma_{n}(\mathcal{V}(\mathbb{Z} G)) \subseteq \mathcal{V}_{n}(\mathbb{Z} G)
$$

Thus the triviality of the \triangle-adic residue of $\mathcal{V}(2)$

$$
\nu_{\omega}(\mathbb{Z} G):=\cap_{n=1}^{\infty} \nu_{n}(\mathbb{Z} G)
$$

Units and augmentation powers in integral group rings

Maheshwary, S. and Passi, I. B. S., J. Group Theory,[MP20]

- The augmentation ideal $\Delta(G)$ of $\mathbb{Z} G$ induce a Δ-adic filtration of G, namely, the one given by its dimension subgroups defined by setting

$$
D_{n}(G)=G \cap\left(1+\Delta^{n}(G)\right), n=1,2,3, \ldots
$$

\square This suggests natural extension to the full unit group $\mathcal{V}(\mathbb{Z} G)$ of normalized units, by setting

$$
\mathcal{V}_{n}(\mathbb{Z} G)=\mathcal{V}(\mathbb{Z} G) \cap\left(1+\Delta^{n}(G)\right), n=1,2,3 \ldots
$$

$\square\left\{\mathcal{V}_{n}(\mathbb{Z} G)\right\}_{n \geq 1}$ is a central series in $\mathcal{V}(\mathbb{Z} G)$. For every $n \geq 1$,

$$
\gamma_{n}(\mathcal{V}(\mathbb{Z} G)) \subseteq \mathcal{V}_{n}(\mathbb{Z} G)
$$

\square Thus the triviality of the Δ-adic residue of $\mathcal{V}(\mathbb{Z} G)$

$$
\mathcal{V}_{\omega}(\mathbb{Z} G):=\cap_{n=1}^{\infty} \mathcal{V}_{n}(\mathbb{Z} G)
$$

implies the residual nilpotence of $\mathcal{V}(\mathbb{Z} G)$.

Units and augmentation powers in integral group rings
Maheshwary, S. and Passi, I. B. S., J. Group Theory,[MP20]

```
Theorem
Let G be a finite group. Then }\mp@subsup{\mathcal{V}}{n}{}(\mathbb{Z}G)={1} for some n\geq1 if, and only
if, either
G is an abelian cut-group; or
G= Q 
order 8 and E denotes an elementary abelian 2-group.
Let G be a finite group. Then \nu
    (i) G is an abelian group of exponent 6,or;
    (ii) G is a p-group.
```

Units and augmentation powers in integral group rings
Maheshwary, S. and Passi, I. B. S., J. Group Theory,[MP20]

Theorem
Let G be a finite group. Then $\mathcal{V}_{n}(\mathbb{Z} G)=\{1\}$ for some $n \geq 1$ if, and only if, either
(i) G is an abelian cut-group; or
(ii) $G=Q_{8} \times E$, where Q_{8} denotes the quaternion group of order 8 and E denotes an elementary abelian 2-group.

Let G be a finite group. Then $\nu_{\omega}(\mathbb{Z} G)=\{1\}$ if, and only if, either G is an abelian group of exponent 6 , or:
G is a p-group.

Units and augmentation powers in integral group rings
Maheshwary, S. and Passi, I. B. S., J. Group Theory,[MP20]

Theorem
Let G be a finite group. Then $\mathcal{V}_{n}(\mathbb{Z} G)=\{1\}$ for some $n \geq 1$ if, and only if, either
(i) G is an abelian cut-group; or
(ii) $G=Q_{8} \times E$, where Q_{8} denotes the quaternion group of order 8 and E denotes an elementary abelian 2-group.

Theorem

Let G be a finite group. Then $\mathcal{V}_{\omega}(\mathbb{Z} G)=\{1\}$ if, and only if, either
(i) G is an abelian group of exponent 6 , or;
(ii) G is a p-group.

Units and augmentation powers in integral group rings
Maheshwary, S. and Passi, I. B. S., J. Group Theory,[MP20]

Theorem
If G is a group with Δ-adic residue of $\mathcal{V}(\mathbb{Z} G)$ trivial, then G cannot have an element of order pq with primes $p<q$, except possibly when $(p, q)=(2,3)$; in particular, if the group G is either 2-torsion-free or 3-torsion-free, then every torsion-element of G has prime-power order.

Theorem
Let G be a nilpotent group with $\mathcal{V}_{\omega}(\mathbb{Z} G)=\{1\}$, and let T be its torsion
subgroup. Then one of the following statements holds:

```
T={1}
    T is a (2,3) group of exponent 6;
    T is a p-group, T(p)\not=T, and T(p) is an abelian p-group
    of exponent at most 4.
```

Units and augmentation powers in integral group rings

Maheshwary, S. and Passi, I. B. S., J. Group Theory,[MP20]

Theorem

If G is a group with Δ-adic residue of $\mathcal{V}(\mathbb{Z} G)$ trivial, then G cannot have an element of order $p q$ with primes $p<q$, except possibly when $(p, q)=(2,3)$; in particular, if the group G is either 2-torsion-free or 3-torsion-free, then every torsion element of G has prime-power order.

Let G be a nilpotent group with $\nu_{\omega}(\mathbb{Z} G)=\{1\}$, and let T be its torsion subgroup. Then one of the following statements holds:

Units and augmentation powers in integral group rings

Maheshwary, S. and Passi, I. B. S., J. Group Theory,[MP20]

Theorem

If G is a group with Δ-adic residue of $\mathcal{V}(\mathbb{Z} G)$ trivial, then G cannot have an element of order $p q$ with primes $p<q$, except possibly when $(p, q)=(2,3)$; in particular, if the group G is either 2-torsion-free or 3-torsion-free, then every torsion element of G has prime-power order.

Theorem

Let G be a nilpotent group with $\mathcal{V}_{\omega}(\mathbb{Z} G)=\{1\}$, and let T be its torsion subgroup. Then one of the following statements holds:
(i) $T=\{1\}$;
(ii) T is a $(2,3)$ group of exponent 6 ;
(iii) T is a p-group, $T(p) \neq T$, and $T(p)$ is an abelian p-group of exponent at most 4.

Units and augmentation powers in integral group rings
Maheshwary, S. and Passi, I. B. S., J. Group Theory,[MP20]

In particular, if G is a nilpotent group with its torsion subgroup $\{2,3\}$-torsion-free, then, $\mathcal{V}(\mathbb{Z} G)$ has trivial Δ-adic residue only if either G is a torsion-free group or its torsion subgroup is a p-group which has no element of infinite 7 -heigft.
\square
Let G be an abelian group and let T be its torsion subgroup. Then, $\nu_{\omega}(\mathbb{Z} G)=\{1\}$ if, and only if, $V_{\omega}(\mathbb{Z} T)=\{1\}$

- Examined the class \mathbb{G} of groups G with $\mathcal{V}_{\omega}(\mathbb{Z} G)=\{1\}$, and prove that a gropp G belongs to \mathcal{C} if all its quotients $G / \gamma_{n}(G)$ do so. - Also, examineathe groups G which have the property that the dimension series $\left\{D_{n, \mathbb{Q}}(G)\right\} n \geq 1$ over the rationals has non-trivial intersection while $\left\{D_{n}(G)\right\}_{n \geq 1}$, the one over the integers, has trivial intersection.

Units and augmentation powers in integral group rings
Maheshwary, S. and Passi, I. B. S., J. Group Theory,[MP20]

In particular, if G is a nilpotent group with its torsion subgroup $\{2,3\}$-torsion-free, then, $\mathcal{V}(\mathbb{Z} G)$ has trivial Δ-adic residue only if either G is a torsion-free group or its torsion subgroup is a p-group which has no element of infinite p-height.

Units and augmentation powers in integral group rings
Maheshwary, S. and Passi, I. B. S., J. Group Theory,[MP20]

In particular, if G is a nilpotent group with its torsion subgroup $\{2,3\}$-torsion-free, then, $\mathcal{V}(\mathbb{Z} G)$ has trivial Δ-adic residue only if either G is a torsion-free group or its torsion subgroup is a p-group which has no element of infinite p-height.

Theorem

Let G be an abelian group and let T be its torsion subgroup. Then, $\mathcal{V}_{\omega}(\mathbb{Z} G)=\{1\}$ if, and only if, $\mathcal{V}_{\omega}(\mathbb{Z} T)=\{1\}$.

trivial intersection.

Units and augmentation powers in integral group rings
Maheshwary, S. and Passi, I. B. S., J. Group Theory,[MP20]

In particular, if G is a nilpotent group with its torsion subgroup
$\{2,3\}$-torsion-free, then, $\mathcal{V}(\mathbb{Z} G)$ has trivial Δ-adic residue only if either G is a torsion-free group or its torsion subgroup is a p-group which has no element of infinite p-height.

Theorem

Let G be an abelian group and let T be its torsion subgroup. Then, $\mathcal{V}_{\omega}(\mathbb{Z} G)=\{1\}$ if, and only if, $\mathcal{V}_{\omega}(\mathbb{Z} T)=\{1\}$.
\square Examined the class \mathcal{C} of groups G with $\mathcal{V}_{\omega}(\mathbb{Z} G)=\{1\}$, and prove that a group G belongs to \mathcal{C} if all its quotients $G / \gamma_{n}(G)$ do so.
dimension series $\left\{D_{n, \mathbb{Q}}(G)\right\}_{n \geq 1}$ over the rationals has non-trivial intersection while $\left\{D_{n}(G)\right\}_{n>1}$, the one over the integers, has trivial intersection.

Units and augmentation powers in integral group rings
Maheshwary, S. and Passi, I. B. S., J. Group Theory,[MP20]

In particular, if G is a nilpotent group with its torsion subgroup $\{2,3\}$-torsion-free, then, $\mathcal{V}(\mathbb{Z} G)$ has trivial Δ-adic residue only if either G is a torsion-free group or its torsion subgroup is a p-group which has no element of infinite p-height.

Theorem

Let G be an abelian group and let T be its torsion subgroup. Then, $\mathcal{V}_{\omega}(\mathbb{Z} G)=\{1\}$ if, and only if, $\mathcal{V}_{\omega}(\mathbb{Z} T)=\{1\}$.
\square Examined the class \mathcal{C} of groups G with $\mathcal{V}_{\omega}(\mathbb{Z} G)=\{1\}$, and prove that a group G belongs to \mathcal{C} if all its quotients $G / \gamma_{n}(G)$ do so.
\square Also, examined the groups G which have the property that the dimension series $\left\{D_{n, \mathbb{Q}}(G)\right\}_{n \geq 1}$ over the rationals has non-trivial intersection while $\left\{D_{n}(G)\right\}_{n \geq 1}$, the one over the integers, has trivial intersection.

The lower central series of \mathcal{V}

S. Maheshwary, [Mah21]

Problem 4

Given a group G, describe $\gamma_{i}(\mathcal{V}(\mathbb{Z} G)) / \gamma_{i+1}(\mathcal{V}(\mathbb{Z} G))$, for $i \geq 0$.

If $G=S_{3}$, the symmetric group on-3 elements, then $\square \mathcal{V} / \mathcal{V}^{\prime}$ is isomorphic to the Klein's 4 group, $\square \mathcal{V} / \gamma_{n}(\mathcal{V})$ is isomorphic to Dihedral group of order $2^{n}, n \geq 2$, and $\square \gamma_{n}(\mathcal{V}) / \gamma_{n+1}(\mathcal{V}) \cong C_{2}, n \geq 2$.

If $G=D_{8}$, the dihedral group on 4 elements, then
$\square \mathcal{V} / \mathcal{V}^{\prime}$ is isomorphic to the elementary abelian group of order 16
\square The order of $\mathcal{V} / \gamma_{3}(\mathcal{V})$ is 512.

- $\gamma_{3}(\mathcal{V})$ is free group of rank 129.

The lower central series of \mathcal{V}

S. Maheshwary, [Mah21]

Problem 4

Given a group G, describe $\gamma_{i}(\mathcal{V}(\mathbb{Z} G)) / \gamma_{i+1}(\mathcal{V}(\mathbb{Z} G))$, for $i \geq 0$.

Theorem ([SGV97])

If $G=S_{3}$, the symmetric group on 3 elements, then
$\square \mathcal{V} / \mathcal{V}^{\prime}$ is isomorphic to the Klein's 4 group,
$\square \mathcal{V} / \gamma_{n}(\mathcal{V})$ is isomorphic to Dihedral group of order $2^{n}, n \geq 2$, and
$\square \gamma_{n}(\mathcal{V}) / \gamma_{n+1}(\mathcal{V}) \cong C_{2}, n \geq 2$.

If $G=D_{8}$, the dihedral group on 4 elements, then
$\mathcal{V} / \mathcal{V}^{\prime}$ is isomorphic to the elementary abelian group of order 16
The order of $\mathcal{V} / \gamma_{3}(\mathcal{V})$ is 512.
$\gamma_{3}(\nu)$ is free group of rank 129.

The lower central series of \mathcal{V}

S. Maheshwary, [Mah21]

Problem 4

Given a group G, describe $\gamma_{i}(\mathcal{V}(\mathbb{Z} G)) / \gamma_{i+1}(\mathcal{V}(\mathbb{Z} G))$, for $i \geq 0$.

Theorem ([SGV97])

If $G=S_{3}$, the symmetric group on 3 elements, then
$\square \mathcal{V} / \mathcal{V}^{\prime}$ is isomorphic to the Klein's 4 group,
$\square \mathcal{V} / \gamma_{n}(\mathcal{V})$ is isomorphic to Dihedral group of order $2^{n}, n \geq 2$, and
$\square \gamma_{n}(\mathcal{V}) / \gamma_{n+1}(\mathcal{V}) \cong C_{2}, n \geq 2$.

Theorem ([SG01])

If $G=D_{8}$, the dihedral group on 4 elements, then
$\square \mathcal{V} / \mathcal{V}^{\prime}$ is isomorphic to the elementary abelian group of order 16
\square The order of $\mathcal{V} / \gamma_{3}(\mathcal{V})$ is 512.
$\square \gamma_{3}(\mathcal{V})$ is free group of rank 129.

Abelianization of the unit group of an integral group ring
A. Bachle, S. Maheshwary and L. Margolis, [BMM21]

I.Schur

$[H: Z(H)]<\infty \Longrightarrow\left|H^{\prime}\right|<\infty$.
\qquad
If H is finitely generated, then $\left|H^{\prime}\right|<\infty \Longrightarrow[H: Z(H)]<\infty$
\square
N : the direct product of countably many Prüfer 2-groups $C_{2 \infty}, x$ be an involution acting on each of these direct factors by inversion. Then $G=N \rtimes\langle x\rangle$ has infinite center, consisting of 1 and all the involutions in N, but has finite abelianization, as $G^{\prime}=N$.
$S L_{2}(\mathbb{Z}[\sqrt{-2}])$ has infinite abelianization, but finite centre. In fact, Any non-abelian free group (centre trivial), rank of abelianization-same as number of generators.

Abelianization of the unit group of an integral group ring
A. Bachle, S. Maheshwary and L. Margolis, [BMM21]

I.Schur

$[H: Z(H)]<\infty \Longrightarrow\left|H^{\prime}\right|<\infty$.
B.H.Neumann

If H is finitely generated, then $\left|H^{\prime}\right|<\infty \quad \Longrightarrow \quad[H: Z(H)]<\infty$
N : the direct product of countably many Prüfer 2-groups $C_{2 \infty}, x$ be an involution acting on each of these direct factors by inversion. Then $G=N \rtimes\langle x\rangle$ has infinite center, consisting of 1 and all the involutions in N, but has finite abelianization, as $G^{\prime}=N$.
$S L_{2}(\mathbb{Z}[\sqrt{-2}])$ has infinite abelianization, but finite centre. In fact, Any non-abelian free group (centre trivial), rank of abelianization-same as number of generators.

Abelianization of the unit group of an integral group ring
A. Bachle, S. Maheshwary and L. Margolis, [BMM21]

I.Schur

$[H: Z(H)]<\infty \Longrightarrow\left|H^{\prime}\right|<\infty$.

B.H.Neumann

If H is finitely generated, then $\left|H^{\prime}\right|<\infty \quad \Longrightarrow \quad[H: Z(H)]<\infty$
(1): Does $\left[H: H^{\prime}\right]<\infty$ imply $|Z(H)|<\infty$?
N : the direct product of countably many Prüfer 2-groups $C_{2} \infty, x$ be an involution acting on each of these direct factors by inversion. Then $G=N \rtimes\langle x\rangle$ has infinite center, consisting of 1 and all the involutions in N, but has finite abelianization, as $G^{\prime}=N$.
$S L_{2}(\mathbb{Z}[\sqrt{-2}])$ has infinite abelianization, but finite centre. In fact, Any non-abelian free group (centre trivial), rank of abelianization-same as number of generators.

Abelianization of the unit group of an integral group ring
A. Bachle, S. Maheshwary and L. Margolis, [BMM21]

I.Schur

$[H: Z(H)]<\infty \Longrightarrow\left|H^{\prime}\right|<\infty$.

B.H.Neumann

If H is finitely generated, then $\left|H^{\prime}\right|<\infty \quad \Longrightarrow \quad[H: Z(H)]<\infty$
(1): Does $\left[H: H^{\prime}\right]<\infty$ imply $|Z(H)|<\infty$?
N : the direct product of countably many Prüfer 2-groups $C_{2} \infty, x$ be an involution acting on each of these direct factors by inversion: Then $G=N \rtimes\langle x\rangle$ has infinite center, consisting of 1 and all the involutions in N, but has finite abelianization, as $G^{\prime}=N$.
(2): Does $|Z(H)|<\infty$ imply $\left[H: H^{\prime}\right]<\infty$?
$S L_{2}(\mathbb{Z}[\sqrt{-2}])$ has infinite abelianization, but finite centre. In fact, Any non-abelian free group (centre trivial), rank of abelianization-same as number of generators.

Abelianization of the unit group of an integral group ring
A. Bachle, S. Maheshwary and L. Margolis, [BMM21]

I.Schur

$[H: Z(H)]<\infty \Longrightarrow\left|H^{\prime}\right|<\infty$.

B.H.Neumann

If H is finitely generated, then $\left|H^{\prime}\right|<\infty \quad \Longrightarrow \quad[H: Z(H)]<\infty$

(1): Does $\left[H: H^{\prime}\right]<\infty$ imply $|Z(H)|<\infty$?

N : the direct product of countably many Prüfer 2-groups $C_{2 \infty}, x$ be an involution acting on each of these direct factors by inversion. Then $G=N \rtimes\langle x\rangle$ has infinite center, consisting of 1 and all the involutions in N, but has finite abelianization, as $G^{\prime}=N$.

(2): Does $|Z(H)|<\infty$ imply $\left[H: H^{\prime}\right]<\infty$?

$S L_{2}(\mathbb{Z}[\sqrt{-2}])$ has infinite abelianization, but finite centre. In fact, Any non-abelian free group (centre trivial), rank of abelianization-same as number of generators.

Abelianization of the unit group of an integral group ring

A. Bachle, S. Maheshwary and L. Margolis, [BMM21]

I.Schur

$[H: Z(H)]<\infty \Longrightarrow\left|H^{\prime}\right|<\infty$.

B.H.Neumann

If H is finitely generated, then $\left|H^{\prime}\right|<\infty \quad \Longrightarrow \quad[H: Z(H)]<\infty$

(1): Does $\left[H: H^{\prime}\right]<\infty$ imply $|Z(H)|<\infty$?

N : the direct product of countably many Prüfer 2-groups $C_{2 \infty}, x$ be an involution acting on each of these direct factors by inversion. Then $G=N \rtimes\langle x\rangle$ has infinite center, consisting of 1 and all the involutions in N, but has finite abelianization, as $G^{\prime}=N$.

(2): Does $|Z(H)|<\infty$ imply $\left[H: H^{\prime}\right]<\infty$?

$S L_{2}(\mathbb{Z}[\sqrt{-2}])$ has infinite abelianization, but finite centre. In fact, Any non-abelian free group (centre trivial), rank of abelianization-same as number of generators.

Abelianization of the unit group of an integral group ring

A. Bachle, S. Maheshwary and L. Margolis, [BMM21]

I.Schur

$[H: Z(H)]<\infty \Longrightarrow\left|H^{\prime}\right|<\infty$.

B.H.Neumann

If H is finitely generated, then $\left|H^{\prime}\right|<\infty \quad \Longrightarrow \quad[H: Z(H)]<\infty$

(1): Does $\left[H: H^{\prime}\right]<\infty$ imply $|Z(H)|<\infty$?

N : the direct product of countably many Prüfer 2-groups $C_{2 \infty}, x$ be an involution acting on each of these direct factors by inversion. Then $G=N \rtimes\langle x\rangle$ has infinite center, consisting of 1 and all the involutions in N, but has finite abelianization, as $G^{\prime}=N$.

(2): Does $|Z(H)|<\infty$ imply $\left[H: H^{\prime}\right]<\infty$?

$S L_{2}(\mathbb{Z}[\sqrt{-2}])$ has infinite abelianization, but finite centre. In fact, Any non-abelian free group (centre trivial), rank of abelianization-same as number of generators.

Abelianization of the unit group of an integral group ring
A. Bachle, S. Maheshwary and L. Margolis, [BMM21]

Abelianization of the unit group of an integral group ring
A. Bachle, S. Maheshwary and L. Margolis, [BMM21]

Question: What if $H=\mathcal{V}(\mathbb{Z} G)$?

If \mathcal{O} is an order in a finite-dimensiònal semi-simple rational algebra with unit group $U=\mathrm{U}(\mathcal{O})$, then
$\operatorname{rank} U\left(U^{\prime} \cong \operatorname{rank} K_{1}(\mathcal{O})=\operatorname{rank} \mathcal{Z}(\mathcal{U})\right.$.
where $K_{1}(O)=\mathrm{GL}(O) / \mathrm{GL}(\mathcal{O})^{\prime}$, and rank A denotes the torsion-free rank of a finitely generated abelian group A

Clearly, rank $\mathcal{V} / \mathcal{V}^{\prime} \geqslant \operatorname{rank} \mathcal{Z}(\mathcal{V})$.

Abelianization of the unit group of an integral group ring
A. Bachle, S. Maheshwary and L. Margolis, [BMM21]

Question: What if $H=\mathcal{V}(\mathbb{Z} G)$?

Bachle et al., [BJJ+23], Abelianization and fixed point properties of units in integral group

 ringsIf \mathcal{O} is an order in a finite-dimensional semi-simple rational algebra with unit group $U=U(\mathcal{O})$, then

$$
\operatorname{rank} U / U^{\prime} \geqslant \operatorname{rank} K_{1}(\mathcal{O})=\operatorname{rank} \mathcal{Z}(U)
$$

where $K_{1}(\mathcal{O})=\mathrm{GL}(\mathcal{O}) / \mathrm{GL}(\mathcal{O})^{\prime}$, and rank A denotes the torsion-free rank of a finitely generated abelian group A

Clearly, rank $\mathcal{V} / \mathcal{V}^{\prime} \geqslant \operatorname{rank} \mathcal{Z}(\mathcal{V})$.

Abelianization of the unit group of an integral group ring
A. Bachle, S. Maheshwary and L. Margolis, [BMM21]

Abelianization of the unit group of an integral group ring
A. Bachle, S. Maheshwary and L. Margolis, [BMM21]
(R1) Is $\operatorname{rank} \mathcal{V} / \mathcal{V}^{\prime}=\operatorname{rank} \mathcal{Z}(\mathcal{V})$?

Abelianization of the unit group of an integral group ring
A. Bachle, S. Maheshwary and L. Margolis, [BMM21]
(R1) Is rank $\mathcal{V} / \mathcal{V}^{\prime}=\operatorname{rank} \mathcal{Z}(\mathcal{V})$?
(R2) Assume $\mathcal{Z}(\mathcal{V})$ is finite. Is $\mathcal{V} / \mathcal{V}^{\prime}$ also finite?

Abelianization of the unit group of an integral group ring
A. Bachle, S. Maheshwary and L. Margolis, [BMM21]
(R1) Is $\operatorname{rank} \mathcal{V} / \mathcal{V}^{\prime}=\operatorname{rank} \mathcal{Z}(\mathcal{V})$?
$(\mathrm{R} 2)$ Assume $\mathcal{Z}(\mathcal{V})$ is finite. Is $\mathcal{V} / \mathcal{V}^{\prime}$ also finite?
(E1) Is $\exp \mathcal{V} / \mathcal{V}^{\prime}=\exp G / G^{\prime}$?
(E2) Does $\exp V / K^{\prime}$ divide $\exp G$?

Abelianization of the unit group of an integral group ring
A. Bachle, S. Maheshwary and L. Margolis, [BMM21]
(R1) Is $\operatorname{rank} \mathcal{V} / \mathcal{V}^{\prime}=\operatorname{rank} \mathcal{Z}(\mathcal{V})$?
(R2) Assume $\mathcal{Z}(\mathcal{V})$ is finite. Is $\mathcal{V} / \mathcal{V}^{\prime}$ also finite?
(E1) Is $\exp \mathcal{V} / \mathcal{V}^{\prime}=\exp G / G^{\prime}$?
(E2) Does $\exp \mathcal{V} / \mathcal{V}^{\prime}$ divide $\exp G$?

Abelianization of the unit group of an integral group ring
A. Bachle, S. Maheshwary and L. Margolis, [BMM21]
(R1) Is $\operatorname{rank} \mathcal{V} / \mathcal{V}^{\prime}=\operatorname{rank} \mathcal{Z}(\mathcal{V})$?
(R2) Assume $\mathcal{Z}(\mathcal{V})$ is finite. Is $\mathcal{V} / \mathcal{V}^{\prime}$ also finite?
(E1) Is $\exp \mathcal{V} / \mathcal{V}^{\prime}=\exp G / G^{\prime}$?
(E2) Does $\exp \mathcal{V} / \mathcal{V}^{\prime}$ divide $\exp G$?
(P) If $\mathcal{V} / \mathcal{V}^{\prime}$ contains an element of order p, does G contain an element of order p, for every prime p ?

Abelianization of the unit group of an integral group ring
A. Bachle, S. Maheshwary and L. Margolis, [BMM21]

Theorem
Let G be a finite group and let \mathcal{B} be the subgroup of $V=\mathcal{V}(\mathbb{Z} G)$, generated by the elements of G, the bicyclic and the Bass units of $\mathbb{Z} G$. If \mathcal{B} has finite index in V, then rank $V / V^{\prime}=\operatorname{rank} \mathcal{Z}(V)$, i.e., (R1) has a positive answer.

Corollary
Let G be a dihedral group and let $V=V(\mathbb{Z} G)$. Then
$\operatorname{rank} \mathcal{Z}(V)=\operatorname{rank} V / V$ i.e.s $(R 1)$ has a positive answer.

Proposition
Let G be a finite group and let B the subgroup of $V=V(\mathbb{Z} G)$
generated by the elements of G, the bicyclic and the Bass units of $\mathbb{Z} G$.
Denote by $\varphi: V \rightarrow V / V^{\prime}$ the natural projection. Then
$\operatorname{rank} \varphi(\mathcal{B})=\operatorname{rank} \mathcal{Z}(V)$ and $\exp \varphi(\mathcal{B})$ divides $\exp G$.

Abelianization of the unit group of an integral group ring
A. Bachle, S. Maheshwary and L. Margolis, [BMM21]

Theorem

Let G be a finite group and let \mathcal{B} be the subgroup of $V=\mathcal{V}(\mathbb{Z} G)$, generated by the elements of G, the bicyclic and the Bass units of $\mathbb{Z} G$. If \mathcal{B} has finite index in V, then rank $V / V^{\prime}=\operatorname{rank} \mathcal{Z}(V)$, i.e., (R1) has a positive answer.

Let G be a dihedral group and let $V=V(\mathbb{Z} G)$. Then
$\operatorname{rank} \mathcal{Z}(V)=\operatorname{rank} V / V$ i.e., (R1) has a positive answer.

Let G be a finite group and let \mathcal{B} the subgroup of $V=\mathcal{V}(\mathbb{Z} G)$
generated by the elements of G, the bicyclic and the Bass units of $\mathbb{Z} G$.
Denote by $\varphi: V \rightarrow V / V^{\prime}$ the natural projection. Then
$\operatorname{rank} \varphi(\mathcal{B})=\operatorname{rank} \mathcal{Z}(V)$ and $\exp \varphi(\mathcal{B})$ divides $\exp G$.

Abelianization of the unit group of an integral group ring
A. Bachle, S. Maheshwary and L. Margolis, [BMM21]

Theorem

Let G be a finite group and let \mathcal{B} be the subgroup of $V=\mathcal{V}(\mathbb{Z} G)$, generated by the elements of G, the bicyclic and the Bass units of $\mathbb{Z} G$. If \mathcal{B} has finite index in V, then rank $V / V^{\prime}=\operatorname{rank} \mathcal{Z}(V)$, i.e., (R1) has a positive answer.

Corollary

Let G be a dihedral group and let $V=\mathrm{V}(\mathbb{Z} G)$. Then
$\operatorname{rank} \mathcal{Z}(V)=\operatorname{rank} V / V^{\prime}$, i.e., (R1) has a positive answer.

Let G be a finite group and let \mathcal{B} the subgroup of $V=\mathcal{V}(\mathbb{Z} G)$
generated by the elements of G, the bicyclic and the Bass units of $\mathbb{Z} G$.
Denote by $\varphi: V \rightarrow V / V^{\prime}$ the natural projection. Then
$\operatorname{rank} \varphi(\mathcal{B})=\operatorname{rank} \mathcal{Z}(V)$ and $\exp \varphi(\mathcal{B})$ divides $\exp G$.

Abelianization of the unit group of an integral group ring
A. Bachle, S. Maheshwary and L. Margolis, [BMM21]

Theorem

Let G be a finite group and let \mathcal{B} be the subgroup of $V=\mathcal{V}(\mathbb{Z} G)$, generated by the elements of G, the bicyclic and the Bass units of $\mathbb{Z} G$. If \mathcal{B} has finite index in V, then rank $V / V^{\prime}=\operatorname{rank} \mathcal{Z}(V)$, i.e., (R1) has a positive answer.

Corollary

Let G be a dihedral group and let $V=\mathrm{V}(\mathbb{Z} G)$. Then
$\operatorname{rank} \mathcal{Z}(V)=\operatorname{rank} V / V^{\prime}$, i.e., (R1) has a positive answer.

Proposition

Let G be a finite group and let \mathcal{B} the subgroup of $V=\mathcal{V}(\mathbb{Z} G)$
generated by the elements of G, the bicyclic and the Bass units of $\mathbb{Z} G$.
Denote by $\varphi: V \rightarrow V / V^{\prime}$ the natural projection. Then
$\operatorname{rank} \varphi(\mathcal{B})=\operatorname{rank} \mathcal{Z}(V)$ and $\exp \varphi(\mathcal{B})$ divides $\exp G$.

Abelianization of the unit group of an integral group ring
A. Bachle, S. Maheshwary and L. Margolis, [BMM21]

Bicyclic Units

For a subgroup H of G and an element g in $G, \widetilde{H}=\sum_{h \in H} h \in \mathbb{Z} G$ and $\widetilde{g}=\widetilde{\langle g}\rangle$. For $g, h \in G$

$$
b(g, h):=1+(1-h) g \widetilde{h},
$$

denotes a bicyclic unit in $\mathrm{V}(\mathbb{Z} G)$.

Bicyclic Units

Let $g, h \in G$ be such that h is of order n. Then

$$
\prod_{k=1}^{n}\left[b(g, h)^{-1}, h^{k}\right]=b(g, h)^{n}
$$

In particular, $\varphi(b(g, h))^{n}=1$.

Abelianization of the unit group of an integral group ring

A. Bachle, S. Maheshwary and L. Margolis, [BMM21]

Bass units

If $g \in G$ is of order n and k, m are positive integers such that k is coprime to n and $k^{m} \equiv 1 \bmod n$, then

$$
u_{k, m}(g):=\left(1+g+g^{2}+\ldots+g^{k-1}\right)^{m}+\frac{1-k^{m}}{n} \widetilde{g}
$$

is a Bass unit.

Bass units

Let $g \in G$ be an element of order n and let l, m be integers such that $I^{m} \equiv 1 \bmod n$. Assume that $g \sim_{G} g^{\prime}$, say $g^{h}=g^{\prime}$ for some $h \in G$, and let s be the order of $/$ in $U(\mathbb{Z} / n \mathbb{Z})$. Then

$$
\prod_{i=1}^{s-1}\left[u_{l, m}(g)^{-1}, h^{i}\right]=u_{l, m}(g)^{s} .
$$

In particular, $\varphi\left(u_{l, m}(g)\right)^{s}=1$.

Abelianization of the unit group of an integral group ring
A. Bachle, S. Maheshwary and L. Margolis, [BMM21]

Theorem

Proposition Let G be a dihedral group of order $2 p$, where p is an odd prime, and let $V=\mathcal{V}(\mathbb{Z} G)$. Then $\exp V / V^{\prime}=\exp G / G^{\prime}$, i.e., (E1) holds for G.

Theorem

Let G be a group and let $V=\mathcal{V}(\mathbb{Z} G)$.

1. If G is of order at most 15, then (R1) and (E1) have positive answers for G.
2. There are non-abelian groups of order 16 for which (R1) has a positive answer. There is a group of order 16 for which (R2), and hence also (R1), has a negative answer.

Description of V / V^{\prime}, for groups of order ≤ 16, [BMM21]
\square If G is an abelian cut-group, i.e., of exponent $2,3,4$ or 6 , then $V=G$, and $V / V^{\prime}=V=G$.
\square If G is an abeliangroup (of any exponent), then $V / V^{\prime}=V=G \times{ }^{\prime} F$.wheref is f.g. free group of rank $\frac{1}{2}\left(|G|+n_{2}-2 C+1\right)$, wheret $G \mid$ denotes the order of the group G, n_{2} is the number of elementsof order 2 in G and c is the number of cyclic subgrowios of G.
\square Computations fop ทón-adbelian groups.
(R1) \checkmark (E1) \checkmark
$\square G \simeq Q_{8}$, then $V=G$. Hence, $V / V^{\prime}=G / G^{\prime}=C_{2} \times C_{2}$.
$-G \simeq D_{8}$, then $V / V^{\prime}=C_{2}^{4}$.
(R1) $\checkmark($ E1) \checkmark for both groups.

Description of V / V^{\prime}, for groups of order ≤ 16,

 [BMM21]If G is an abelian cut-group, i.e., of exponent 2,3,4 or 6 , then $V=G$, and $V / V^{\prime}=V=G$.

```
If }G\mathrm{ is an abelian-group(of any exponent), then
V/V'=V=G< F,wheref is f.g. free group of rank
\frac{1}{2}(|G|+\mp@subsup{n}{2}{}-2cc+1),\mathrm{ whereff}G| denotes the order of the group }G\mathrm{ ,
n2 is the number of elementsyof order 2 in G and c is the number
of cyclic subgrowes of G./
Computations fo \etaon-a(belian groups.
```

(R1) \checkmark (E
$G \simeq Q_{8}$, then $V=G$. Hence, $V / V^{\prime}=G / G^{\prime}=C_{2} \times C_{2}$
- $G \simeq D_{8}$, then $V / V^{\prime}=C_{2}^{4}$.
(R1) $\checkmark($ E1 $) \checkmark$ for both groups.

Description of V / V^{\prime}, for groups of order ≤ 16,

 [BMM21]If G is an abelian cut-group, i.e., of exponent $2,3,4$ or 6 , then $V=G$, and $V / V^{\prime}=V=G$.
\square If G is an abelian group (of any exponent), then $V / V^{\prime}=V=G \times F$, where F is f.g. free group of rank $\frac{1}{2}\left(|G|+n_{2}-2 c+1\right)$, where $|G|$ denotes the order of the group G, n_{2} is the number of elements of order 2 in G and c is the number of cyclic subgroups of G.

Description of V / V^{\prime}, for groups of order ≤ 16,

 [BMM21]If G is an abelian cut-group, i.e., of exponent $2,3,4$ or 6 , then $V=G$, and $V / V^{\prime}=V=G$.
\square If G is an abelian group (of any exponent), then $V / V^{\prime}=V=G \times F$, where F is f.g. free group of rank $\frac{1}{2}\left(|G|+n_{2}-2 c+1\right)$, where $|G|$ denotes the order of the group G, n_{2} is the number of elements of order 2 in G and c is the number of cyclic subgroups of G.
\square Computations for non-abelian groups.

Description of V / V^{\prime}, for groups of order ≤ 16,

 [BMM21]If G is an abelian cut-group, i.e., of exponent 2,3,4 or 6 , then $V=G$, and $V / V^{\prime}=V=G$.
\square If G is an abelian group (of any exponent), then
$V / V^{\prime}=V=G \times F$, where F is f.g. free group of rank
$\frac{1}{2}\left(|G|+n_{2}-2 c+1\right)$, where $|G|$ denotes the order of the group G, n_{2} is the number of elements of order 2 in G and c is the number of cyclic subgroups of G.
\square Computations for non-abelian groups.
|G|
$6 G \simeq S_{3}$,
$V / V^{\prime} \simeq C_{2} \times C_{2}$.
$(R 1) \checkmark(E 1) \checkmark$

Description of V / V^{\prime}, for groups of order ≤ 16,

 [BMM21]If G is an abelian cut-group, i.e., of exponent 2,3,4 or 6 , then $V=G$, and $V / V^{\prime}=V=G$.
\square If G is an abelian group (of any exponent), then $V / V^{\prime}=V=G \times F$, where F is f.g. free group of rank $\frac{1}{2}\left(|G|+n_{2}-2 c+1\right)$, where $|G|$ denotes the order of the group G, n_{2} is the number of elements of order 2 in G and c is the number of cyclic subgroups of G.
\square Computations for non-abelian groups.
$6 G \simeq S_{3}$,
$V / V^{\prime} \simeq C_{2} \times C_{2}$.
(R1) \checkmark (E1) \checkmark
$8 \square G \simeq Q_{8}$, then $V=G$. Hence, $V / V^{\prime}=G / G^{\prime}=C_{2} \times C_{2}$.

- $G \simeq D_{8}$, then $V / V^{\prime}=C_{2}^{4}$.
(R1) \checkmark (E1) \checkmark for both groups.

Description of V / V^{\prime}, for groups of order ≤ 16, [BMM21]

Description of V / V^{\prime}, for groups of order ≤ 16,

 [BMM21]|G|
$10,14 G \simeq D_{10}, D_{14}$.
None of these is a cut-group. So, abelianisation of V is not finite. (R1) \checkmark (E1) \checkmark for both groups.

Description of V / V^{\prime}, for groups of order ≤ 16,

 [BMM21]|G|
$10,14 G \simeq D_{10}, D_{14}$.
None of these is a cut-group. So, abelianisation of V is not finite. (R1) \checkmark (E1) \checkmark for both groups.
$12 \square G \simeq A_{4}$, the alternating group on 4 elements;
$V / V^{\prime} \simeq C_{3}$

- $G \simeq D_{12}$, the dihedral group of order 12;
$V / V^{\prime} \simeq E_{2} ;$
- $T:=\left\langle a, b \mid a^{6}=1, b^{2}=a^{3}, a^{b}=a^{-1}\right\rangle$, the dicyclic group of order 12.

$$
V / V^{\prime} \simeq C_{2} \times C_{4} .
$$

(R1) \checkmark (E1) \checkmark for all these groups.

Description of V / V^{\prime}, for groups of order ≤ 16,

 [BMM21]|G|
$10,14 G \simeq D_{10}, D_{14}$.
None of these is a cut-group. So, abelianisation of V is not finite. (R1) \checkmark (E1) \checkmark for both groups.
$12 \square G \simeq A_{4}$, the alternating group on 4 elements;
$V / V^{\prime} \simeq C_{3}$
$\square G \simeq D_{12}$, the dihedral group of order 12;
$V / V^{\prime} \simeq E_{2} ;$

- $T:=\left\langle a, b \mid a^{6}=1, b^{2}=a^{3}, a^{b}=a^{-1}\right\rangle$, the dicyclic group of order 12.
$V / V^{\prime} \simeq C_{2} \times C_{4}$.
(R1) \checkmark (E1) \checkmark for all these groups.
- If $G=\simeq Q_{8} \times C_{2}$, then $V=G$
$V / V^{\prime} \cong C_{2} \times C_{2} \times C_{2}$.
(R1) \checkmark (E1) \checkmark
- Let $G=D_{8} \times C_{2}$
(R1) $\checkmark(E 1) \checkmark$

Description of V / V^{\prime}, for groups of order 16, [BMM21]

$16 \square G=P:=\left\langle a, b \mid a^{4}=1, b^{4}=1, a^{b}=a^{-1}\right\rangle$
$V / V^{\prime} \simeq C_{4} \times C_{2}^{7}$.
(R1) \checkmark (E1) \checkmark

- If $G=D_{16}^{+}:=\left\langle a, b \mid a^{8}=b^{2}=1, a^{b}=a^{5}\right\rangle$;
$V / V^{\prime} \cong C_{\infty} \times C_{4} \times C_{2}^{5} .(\mathrm{R} 1) \times(\mathrm{E} 1) \checkmark$
$\square G=D_{16}$, the dihedral group of order 16
(R1) \checkmark (E1)?
- If $G=D:=\left\langle a, b, c \mid a^{2}=b^{2}=c^{4}=1, a^{c}=a, b^{c}=b, a^{b}=c^{2} a b\right\rangle$ or $G=D_{16}^{-}:=\left\langle a, b \mid a^{8}=b^{2}=1, a^{b}=a^{3}\right\rangle$ the unit group $\mathrm{V}(\mathbb{Z} G)$ has also been studied in and one could, in principle, compute the abelianization of their unit groups, analogous to the case of D_{16}^{+}.
- If $G=H:=\left\langle a, b \mid a^{4}=b^{4}=(a b)^{2}=1,\left(a^{2}\right)^{b}=a^{2}\right\rangle$ we cannot conclude if the abelianization of the unit group for this group is finite or not.
\square For $G=\left\langle a, b \mid a^{8}=1, b^{2}=a^{4}, a^{b}=a^{-1}\right\rangle$
V has infinite abelianization, as G it is not a cut group.
(R1) ? (E1) ?

Abelianization of the unit group of an integral group ring
A. Bachle, S. Maheshwary and L. Margolis, [BMM21]

Theorem

Let G be a finite group such that $V=\mathcal{V}(\mathbb{Z} G)$ has a free normal complement, i.e., $V=F \rtimes G$ for some infinite cyclic or non-abelian free group F. Then rank $V / V^{\prime}=\operatorname{rank} \mathcal{Z}(V)=0$ and $\exp V / V^{\prime}=\exp G / G^{\prime}$, i.e., (R1) and (E1) have positive answers in this case.
$\square G=S_{3}: \exp G / G^{\prime}=2, V / V^{\prime} \cong C_{2} \times C_{2}$.
$\square G=D_{8}: \exp G / G^{\prime}=2, V / V^{\prime} \cong C_{2}^{4}$.
$\square G=T: \exp G / G^{\prime}=4, V / V^{\prime} \cong C_{4} \times C_{2}$.
$\square G=P: \exp G / G^{\prime}=4, V / V^{\prime} \cong C_{4} \times C_{2}^{7}$.

The lower central series of \mathcal{V}

S. Maheshwary, [Mah21]

Problem 5

For a group G, give a description of the terms in the lower central series of $\mathcal{V}(\mathbb{Z} G)$.

The answer is of coufse trivia) it \bar{G} is an abelian group.

If $G=A_{4}$, the alternatinggroup on 4 elements, then $\square \mathcal{V} / \mathcal{V}^{\prime}$ is isomorphic to the cyclic group of order 3 and $\square \gamma_{n}(\mathcal{V})=\mathcal{V}^{\prime}$, for every $n \geq 2$.

The lower central series of \mathcal{V}

S. Maheshwary, [Mah21]

Problem 5

For a group G, give a description of the terms in the lower central series of $\mathcal{V}(\mathbb{Z} G)$.

The answer is of course trivial if G is an abelian group.

If $G=A_{4}$, the alternating group on 4 elements, then $\square \mathcal{V} / \mathcal{V}^{\prime}$ is isomorphic to the cyclic group of order 3 and - $\gamma_{n}(\mathcal{V})=\mathcal{V}^{\prime}$, for every $n \geq 2$.

The lower central series of \mathcal{V}

S. Maheshwary, [Mah21]

Problem 5

For a group G, give a description of the terms in the lower central series of $\mathcal{V}(\mathbb{Z} G)$.

The answer is of course trivial if G is an abelian group.

Theorem ([SG00])

If $G=A_{4}$, the alternating group on 4 elements, then
$\square \mathcal{V} / \mathcal{V}^{\prime}$ is isomorphic to the cyclic group of order 3 and

- $\gamma_{n}(\mathcal{V})=\mathcal{V}^{\prime}$, for every $n \geq 2$.

Dedicated to Late Prof. I. B. S. Passi

S.Maheshwary, The Life and works of Profesor I.B.S. Passi, [Mah22]

References I

固 S．R．Arora，A．W．Hales，and I．B．S．Passi，Jordan decomposition and in integral group rings，Comm．Algebra 21 （1993），no．1， 25－35．

目 S．R．Arora and I．B．S．Passi，Central height of the unit group of an integral group ring，Comm．Algebra 21 （1993），no．10，3673－3683．

目 A．Bächle，G．Janssens，E．Jespers，A．Kiefer，and D．Temmerman， Abelianization and fixed point properties of units in integral group rings，Mathematische Nachrichten 296 （2023），no．4，8－56， （https：／／doi．org／10．1002／mana．202000514）．
© A．Bächle，S．Maheshwary，and L．Margolis，Abelianization of the unit group of an integral group ring，Pacific J．Math． 312 （2021）， no．2，309－334．

References II

R G. K. Bakshi, S. Maheshwary, and I. B. S. Passi, Integral group rings with all central units trivial, J. Pure Appl. Algebra 221 (2017), no. 8, 1955-1965.

目 A. I. Lichtman, The residual nilpotency of the augmentation ideal and the residual nilpotency of some classes of groups, Israel Journal of Mathematics 26 (1977), no. 3, 276-293.
S. Maheshwary, The lower central series of the unit group of an integral group ring, Indian J. Pure Appl. Math. 52 (2021), no. 3, 709-712.
\qquad The life and works of professor i. b. s. passi, The Mathematics Consortium Bulletin 3 (2022), no. 4, (https://www.themathconsortium.in/publications).

References III

S. Maheshwary and I. B. S. Passi, Units and augmentation powers in integral group rings, J. Group Theory 23 (2020), no. 6, 931-944.

直 I. Musson and A. Weiss, Integral group rings with residually nilpotent unit groups, Arch. Math. (Basel) 38 (1982), no. 6, 514-530.
R. K. Sharma and S. Gangopadhyay, On chains in units of $\mathbf{Z} A_{4}$, Math. Sci. Res. Hot-Line 4 (2000), no. 9, 1-33.
\qquad , On units in $\mathbf{Z} D_{8}$, PanAmer. Math. J. 11 (2001), no. 1, 1-9.
R. K. Sharma, S. Gangopadhyay, and V. Vetrivel, On units in $\mathbf{Z S}_{3}$, Comm. Algebra 25 (1997), no. 7, 2285-2299.

囦 S. K. Sehgal and H. J. Zassenhaus, Integral group rings with nilpotent unit groups, Comm. Algebra 5 (1977), no. 2, 101-111.

THANK YOU!!!

