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The lower central series of an integral group ring

Notation

q G: a group
q ZG: integral group ring of G, {

∑
g∈G αgg : αg ∈ Z,g ∈ G}

q U := U(ZG): unit group of ZG
q ε : ZG→ Z: augmentation homomorphism (g → 1).
q ε(u) = ±1, u ∈ U .
q V := V(ZG): subgroup formed by elements of U of augmentation

1, the subgroup of normalized units in U .
q U = ±V

γ1(V) = V, γ2(V) = V ′, γi(V) = [γi−1(V),V], i ≥ 2.
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The lower central series of V
S. Maheshwary, [Mah21]

Problem 1
Classify the groups G for which V(ZG)′ = G′.

q The lower central series of G and V(ZG) coincide
⇐⇒ V(ZG) = G.

q If G is finite, V(ZG) = G ⇐⇒ G is an abelian group of exponent
2, 3, 4 or 6, or G = Q8 × E , where E denotes an elementary
abelian 2-group and Q8 is the quaternion group of order 8.

Theorem

For a finite group G, V(ZG)′ = G′, if and only if, G is an abelian group
or a Hamiltonion 2-group.
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The lower central series of V
S. Maheshwary, [Mah21]

Theorem (Hartley,B. and Pickel, P.F. (1980))
Let G be a finite group G, then exactly one of the following occurs:

q G is abelian (and hence so is V(ZG)).
q G is a Hamiltonian-2 group and V(ZG) = {±g | g ∈ G}.
q V(ZG) contains a free subgroup of rank 2.

The problem remains open for an arbitrary group.
This problem is motivated by an analogous question about the upper
central series of V(ZG).
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The upper central series of V

〈1〉 = Z0(V) ⊆ Z1(V) ⊆ ...Zn(V) ⊆ Zn+1(V) ⊆ ...

[AHP93, AP93] Let G be a finite group.
q the central height of V, i.e., the smallest integer n ≥ 0 such that
Zn(V) = Zn+1(V), is at most 2.

q the central height of V is 2 if, and only if, G is a Q∗ group, i.e., if it
has an element a of order 4 and an abelian subgroup H of index
2, which is not an elementary abelian 2-group, such that
G = 〈H,a〉,ha = h−1,∀ h ∈ H and a2 = b2, for some b ∈ H.

q In case the central height of V is 2, then Z2(V) = TZ1(V), where
T = 〈b〉 ⊕ E2, E2 being an elementary abelian 2- group.
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Cut-groups

q If a group G is not a Q∗ group, the central height of V must be 0 or
1.

q Central height 0 essentially means Z(V(ZG)) = 1.
q Since Z(G) ⊆ Z(V(ZG)), the group G must have trivial centre and
Z(G) = Z(V(ZG)).

Definition[BMP17]
In case Z(V(ZG)) = Z(G) i.e., all central units are trivial, G is called a
cut-group, or a group with the cut-property.

So, for a finite group G, V has central height zero if, and only if, G is a
cut-group with trivial centre.
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The lower central series of V
S. Maheshwary, [Mah21]

Problem 2
Given a group G, when does lower central series of V(ZG) stabilize?

q No bound is known for the number of terms in the lower central
series of V(ZG).

q If V(ZG) is nilpotent, the number of terms in both the upper and
the lower central series coincide.

q For a finite group G, V(ZG) is nilpotent, if and only if, G is either
abelian or a Hamiltonion 2-group.
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The termination of the lower central series of
V(ZG)

Theorem [SZ77]
V(ZG) is nilpotent, if and only if, G is
nilpotent and the torsion subgroup T of G satisfies one of the following
conditions:

(i) T is central in G.
(ii) T is an abelian 2-group and for x ∈ G, t ∈ T , xtx−1 = t±1.

(iii) T = E ×Q8, where E is an elementary abelian 2-group
and Q8 is the
quaternion group of order 8. Moreover, E is central in G
and conjugation by x ∈ G, induces on Q8, one of the four
inner automorphisms.

If V(ZG) is not nilpotent, apparently, there is no answer for the stated
problem.
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The lower central series of V
S. Maheshwary, [Mah21]

Problem 3
Given a group G, when is V(ZG) residually nilpotent?

The residual nilpotence of V(ZG)

A group G is said to be residually nilpotent, if the nilpotent residue
defined by

γω(G) := ∩nγn(G),

i.e., the intersection of all members of the lower central series of the
group, is trivial.

q V(ZG) is rarely nilpotent.
q This is due to the presence of non-abelian free groups inside
V(ZG).

q But a free group is residually nilpotent. Therefore, the possibility of
V(ZG) being residually nilpotent cannot be ruled out, even when it
contains a free subgroup.
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The residual nilpotence of V(ZG)

Theorem [MW82]
For a finite group G, the group V(ZG) is residually nilpotent, if and only
if, G is a nilpotent group which is a p-abelian group, i.e., the
commutator subgroup G′ is a p-group, for some prime p.

q A little is known about the residual nilpotence of V(ZG), when the
underlying group G is not finite.

q Some work in this direction can be found in [Lic77], [MW82]
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Units and augmentation powers in integral group rings

Maheshwary, S. and Passi, I. B. S., J. Group Theory,[MP20]

q The augmentation ideal ∆(G) of ZG induce a ∆-adic filtration of
G, namely, the one given by its dimension subgroups defined by
setting

Dn(G) = G ∩ (1 + ∆n(G)), n = 1,2,3, ...

q This suggests natural extension to the full unit group V(ZG) of
normalized units, by setting

Vn(ZG) = V(ZG) ∩ (1 + ∆n(G)), n = 1,2,3...

q {Vn(ZG)}n≥1 is a central series in V(ZG). For every n ≥ 1,

γn(V(ZG)) ⊆ Vn(ZG).

q Thus the triviality of the ∆-adic residue of V(ZG)

Vω(ZG) := ∩∞n=1Vn(ZG)

implies the residual nilpotence of V(ZG).
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Units and augmentation powers in integral group rings

Maheshwary, S. and Passi, I. B. S., J. Group Theory,[MP20]

Theorem
Let G be a finite group. Then Vn(ZG) = {1} for some n ≥ 1 if, and only
if, either

(i) G is an abelian cut-group; or
(ii) G = Q8 × E, where Q8 denotes the quaternion group of

order 8 and E denotes an elementary abelian 2-group.

Theorem

Let G be a finite group. Then Vω(ZG) = {1} if, and only if, either
(i) G is an abelian group of exponent 6, or;

(ii) G is a p-group.
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Units and augmentation powers in integral group rings

Maheshwary, S. and Passi, I. B. S., J. Group Theory,[MP20]

Theorem

If G is a group with ∆-adic residue of V(ZG) trivial, then G cannot have
an element of order pq with primes p < q, except possibly when
(p, q) = (2, 3); in particular, if the group G is either 2-torsion-free or
3-torsion-free, then every torsion element of G has prime-power order.

Theorem

Let G be a nilpotent group with Vω(ZG) = {1}, and let T be its torsion
subgroup. Then one of the following statements holds:

(i) T = {1};
(ii) T is a (2,3) group of exponent 6;
(iii) T is a p-group, T (p) 6= T , and T (p) is an abelian p-group

of exponent at most 4.
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Units and augmentation powers in integral group rings

Maheshwary, S. and Passi, I. B. S., J. Group Theory,[MP20]

In particular, if G is a nilpotent group with its torsion subgroup
{2, 3}-torsion-free, then, V(ZG) has trivial ∆-adic residue only if either
G is a torsion-free group or its torsion subgroup is a p-group which has
no element of infinite p-height.

Theorem

Let G be an abelian group and let T be its torsion subgroup. Then,
Vω(ZG) = {1} if, and only if, Vω(ZT ) = {1}.

q Examined the class C of groups G with Vω(ZG) = {1}, and prove
that a group G belongs to C if all its quotients G/γn(G) do so.

q Also, examined the groups G which have the property that the
dimension series {Dn,Q(G)}n≥1 over the rationals has non-trivial
intersection while {Dn(G)}n≥1, the one over the integers, has
trivial intersection.
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The lower central series of V
S. Maheshwary, [Mah21]

Problem 4
Given a group G, describe γi(V(ZG))/γi+1(V(ZG)), for i ≥ 0.

Theorem ([SGV97])
If G = S3, the symmetric group on 3 elements, then

q V/V ′ is isomorphic to the Klein’s 4 group,
q V/γn(V) is isomorphic to Dihedral group of order 2n, n ≥ 2, and
q γn(V)/γn+1(V) ∼= C2, n ≥ 2.

Theorem ([SG01])
If G = D8, the dihedral group on 4 elements, then

q V/V ′ is isomorphic to the elementary abelian group of order 16
q The order of V/γ3(V) is 512.
q γ3(V) is free group of rank 129.
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Abelianization of the unit group of an integral group ring

A. Bachle, S. Maheshwary and L. Margolis, [BMM21]

I.Schur
[H : Z (H)] <∞ =⇒ |H ′| <∞.

B.H.Neumann
If H is finitely generated, then |H ′| <∞ =⇒ [H : Z (H)] <∞

(1): Does [H : H ′] <∞ imply |Z (H)| <∞?
N: the direct product of countably many Prüfer 2-groups C2∞ , x be an involution acting on each
of these direct factors by inversion. Then G = N o 〈x〉 has infinite center, consisting of 1 and all
the involutions in N, but has finite abelianization, as G′ = N.

(2): Does |Z (H)| <∞ imply [H : H ′] <∞?
SL2(Z[

√
−2]) has infinite abelianization, but finite centre. In fact, Any non-abelian free group

(centre trivial), rank of abelianization-same as number of generators.
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Abelianization of the unit group of an integral group ring

A. Bachle, S. Maheshwary and L. Margolis, [BMM21]

Question: What if H = V(ZG)?

Bachle et al., [BJJ+23], Abelianization and fixed point properties of units in integral group
rings

If O is an order in a finite-dimensional semi-simple rational algebra
with unit group U = U(O), then

rank U/U ′ > rank K1(O) = rankZ(U),

where K1(O) = GL(O)/GL(O)′, and rank A denotes the torsion-free
rank of a finitely generated abelian group A

Clearly, rank V/V ′ > rank Z(V).
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Abelianization of the unit group of an integral group ring

A. Bachle, S. Maheshwary and L. Margolis, [BMM21]

(R1) Is rankV/V ′ = rankZ(V)?

(R2) Assume Z(V) is finite. Is V/V ′ also finite?

(E1) Is expV/V ′ = exp G/G′?

(E2) Does expV/V ′ divide exp G?

(P) If V/V ′ contains an element of order p, does G contain an
element of order p, for every prime p?
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Theorem

Let G be a finite group and let B be the subgroup of V = V(ZG),
generated by the elements of G, the bicyclic and the Bass units of ZG.
If B has finite index in V , then rank V/V ′ = rankZ(V ), i.e., (R1) has a
positive answer.

Corollary
Let G be a dihedral group and let V = V(ZG). Then
rankZ(V ) = rank V/V ′, i.e., (R1) has a positive answer.

Proposition
Let G be a finite group and let B the subgroup of V = V(ZG)
generated by the elements of G, the bicyclic and the Bass units of ZG.
Denote by ϕ : V → V/V ′ the natural projection. Then
rankϕ(B) = rankZ(V ) and expϕ(B) divides exp G.
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Bicyclic Units

For a subgroup H of G and an element g in G, H̃ =
∑

h∈H h ∈ ZG and
g̃ = 〈̃g〉. For g,h ∈ G

b(g,h) := 1 + (1− h)gh̃,

denotes a bicyclic unit in V(ZG).

Bicyclic Units
Let g,h ∈ G be such that h is of order n. Then

n∏
k=1

[b(g,h)−1,hk ] = b(g,h)n.

In particular, ϕ(b(g,h))n = 1.
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Bass units
If g ∈ G is of order n and k , m are positive integers such that k is
coprime to n and km ≡ 1 mod n, then

uk ,m(g) := (1 + g + g2 + ...+ gk−1)m +
1− km

n
g̃

is a Bass unit.

Bass units
Let g ∈ G be an element of order n and let l , m be integers such that
lm ≡ 1 mod n. Assume that g ∼G g l , say gh = g l for some h ∈ G, and
let s be the order of l in U(Z/nZ). Then

s−1∏
i=1

[ul,m(g)−1,hi ] = ul,m(g)s.

In particular, ϕ(ul,m(g))s = 1.
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Theorem
Proposition Let G be a dihedral group of order 2p, where p is an odd
prime, and let V = V(ZG). Then exp V/V ′ = exp G/G′, i.e., (E1) holds
for G.

Theorem

Let G be a group and let V = V(ZG).
1. If G is of order at most 15, then (R1) and (E1) have positive

answers for G.
2. There are non-abelian groups of order 16 for which (R1) has a

positive answer. There is a group of order 16 for which (R2), and
hence also (R1), has a negative answer.
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Description of V/V ′, for groups of order ≤ 16,
[BMM21]

q If G is an abelian cut-group, i.e., of exponent 2,3,4 or 6, then
V = G, and V/V ′ = V = G.

q If G is an abelian group (of any exponent), then
V/V ′ = V = G × F , where F is f.g. free group of rank
1
2(|G|+ n2 − 2c + 1), where |G| denotes the order of the group G,
n2 is the number of elements of order 2 in G and c is the number
of cyclic subgroups of G.

q Computations for non-abelian groups.
|G|

6 G ' S3,
V/V ′ ' C2 × C2.
(R1) X (E1) X

8 q G ' Q8, then V = G. Hence, V/V ′ = G/G′ = C2 × C2.
q G ' D8, then V/V ′ = C4

2 .
(R1) X (E1) X for both groups.
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Description of V/V ′, for groups of order ≤ 16,
[BMM21]

|G|
10,14 G ' D10, D14.

None of these is a cut-group. So, abelianisation of V is not finite.
(R1) X (E1) X for both groups.

12 q G ' A4, the alternating group on 4 elements;
V/V ′ ' C3

q G ' D12, the dihedral group of order 12;
V/V ′ ' E2;

q T := 〈a,b | a6 = 1,b2 = a3,ab = a−1〉, the dicyclic group of order
12.
V/V ′ ' C2 × C4.

(R1) X (E1) X for all these groups.
16 q If G =' Q8 × C2, then V = G

V/V ′ ∼= C2 × C2 × C2.
(R1) X (E1) X

q Let G = D8 × C2
(R1) X (E1) X
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Description of V/V ′, for groups of order 16,
[BMM21]

16 q G = P := 〈a,b | a4 = 1,b4 = 1,ab = a−1〉
V/V ′ ' C4 × C7

2 .
(R1) X (E1) X

q If G = D+
16 := 〈a,b | a8 = b2 = 1,ab = a5〉;

V/V ′ ∼= C∞ × C4 × C5
2 . (R1) × (E1) X

q G = D16, the dihedral group of order 16
(R1) X (E1) ?

q If G = D := 〈a,b, c | a2 = b2 = c4 = 1,ac = a,bc = b,ab = c2ab〉
or G = D−16 := 〈a,b | a8 = b2 = 1,ab = a3〉 the unit group V(ZG)
has also been studied in and one could, in principle, compute the
abelianization of their unit groups, analogous to the case of D+

16.
q If G = H := 〈a,b | a4 = b4 = (ab)2 = 1, (a2)b = a2〉

we cannot conclude if the abelianization of the unit group for this
group is finite or not.

q For G = 〈a,b | a8 = 1,b2 = a4,ab = a−1〉
V has infinite abelianization, as G it is not a cut group.
(R1) ? (E1) ?
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Abelianization of the unit group of an integral group ring

A. Bachle, S. Maheshwary and L. Margolis, [BMM21]

Theorem

Let G be a finite group such that V = V(ZG) has a free normal
complement, i.e., V = F oG for some infinite cyclic or non-abelian free
group F. Then rank V/V ′ = rankZ(V ) = 0 and exp V/V ′ = exp G/G′,
i.e., (R1) and (E1) have positive answers in this case.

q G = S3: exp G/G′ = 2, V/V ′ ∼= C2 × C2.
q G = D8: exp G/G′ = 2, V/V ′ ∼= C4

2 .
q G = T : exp G/G′ = 4, V/V ′ ∼= C4 × C2.
q G = P: exp G/G′ = 4, V/V ′ ∼= C4 × C7

2 .
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The lower central series of V
S. Maheshwary, [Mah21]

Problem 5
For a group G, give a description of the terms in the lower central
series of V(ZG).

The answer is of course trivial if G is an abelian group.

Theorem ([SG00])
If G = A4, the alternating group on 4 elements, then

q V/V ′ is isomorphic to the cyclic group of order 3 and
q γn(V) = V ′, for every n ≥ 2.
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Dedicated to Late Prof. I. B. S. Passi
S.Maheshwary, The Life and works of Profesor I.B.S. Passi, [Mah22]
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