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Context

Notation: k a field, of finite characteristic p to be interesting,
occasionally assumed to be algebraically closed to avoid trivialities.

S a noetherian k-algebra graded by N, e.g. a polynomial ring
S =k[x1,...,xn].

G a finite group, which acts on S preserving the grading.

Any module over S or some noetherian graded sub-algebra will be
assumed to be graded and finite, meaning finitely generated, not
finite cardinality.

This is the context of classical invariant theory, but we are
interested in the structure of S as a kG-module, not just the
invariants.



Motivation

This is a natural problem in representation theory.

For the Lyndon-Hochschild-Serre spectral sequence arising from
groups H <1 G,

H*(G/H; H*(H; k)) = H*(G; k),
we need to understand the action of G/H on H*(H; k).

In chromatic homotopy theory we have the Adams-Novikov
spectral sequence

H*(Gp; En) = muli(n)S°.
Maybe restrict to a finite subgroup.

We would also like some information about the multiplication.



Motivation

Galois Module Theory: L a number field, G acts, K = LG,
Regard Oy as an Ok G-module, or perhaps just as a ZG-module.

Oy has a free submodule of finite index. It is locally free if L/K is
tamely ramified.

From yesterday:
G acts on a curve C, hence on HO(C,Q%™).

C/k

Automorphisms of H*(BT"; Fp).



Example

1 % =*
Field k of characteristic 3, U = Us(F3) = 0 1 x| :xecl;
0 01
Natural module V*, basis x*, y*, z*.
Ring S = S(V*) = k[ V]
Invariants:
dy = degree 1
d, = H (y* + Ax*) = y*3 — y*x*2 degree 3
€F3
d, = H(z + Ay Fux*) =29 .- degree 9

AHU’EIF?)

In fact SY = k[dx, dy, d;].



Example contd.

100
U acts on the dual space V as * 1 0| :xe€lF;3,, basis
* % 1
X, Y, Z.
U fixes z.
1 *
Ui = 0 1 0] :xeTF3, fixes (y,z) pointwise.
0 01
100
U, = 0 1 x| :xelFs3, fixes (x,z) pointwise.
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Us(IF3)

degree | dimensions of indecomposable summands

3
2 6

3 10

4 15
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Example contd.

The right hand red block is spread out by three variables. It is
projective (relative to the trivial group 1) and 1 fixes the whole
3-dimensional space V.

The second to right red block is spread out by two variables. It is
projective relative to U, which fixes a 2-dimensional subspace of
V.

The second to left red block is spread out by two variables. It is
projective relative to Uy, which fixes a 2-dimensional subspace of
V.

The left hand red block is spread out by one variable. It is

projective relative to U, which fixes a 1-dimensional subspace of V.

Spot the pattern.



Commutative Algebra

Dimension: A finite R-module has dimension d if it is finite over
some polynomial subalgebra k[aj, ..., as] < R, but not for any
smaller d.

Depth: A finite R-module has depth d if it is free over some
polynomial subalgebra k[ai, ..., aqs] < R, but not for any larger d.
Cohen-Macaulay: depth = dimension; in other words, free and
finite over some polynomial subalgebra.

In the picture, all four pieces are Cohen-Macaulay, but this does
not hold in general

Hochster: Life is really worth living...in a Cohen-Macaulay ring.

Later revised to: Life is worth living. Period.



Functors

Given a kG-module M, the classical covariants
k[V,M] = (k[V] ® M)® are the equivariant polynomial functions
from V to M.

In characteristic 0 these are all Cohen Macaulay of dimension
dim V (provided Vis faithful).

Notice that k[V, M] = Homyg(M*, k[V]) and
k[V]¢ = Homg(k, k[V]), so we mostly consider functors related
to Homyg (M, —).

—~
For example, Ext,c(M, —) or Homkg(Py, —), where U is a simple
kG-module and Py is its projective cover. The latter counts the
multiplicity of U as a composition factor.



Functors Contd.

We are most interested in indecomposable summands, so we want
Hom{ (M, —) for indecomposable M.

This can be defined as Homyg(M, —)/ rad Homyg (M, —), where
rad denotes the radical in the category kG — mod.

More concretely, for a finite dimensional indecomposable
kG-module M, let

J(M,N) = {f € Homkg(M, N) | f is not split injective}
and define Hom{-(M, N) = Homyg(M, N)/J(M, N).

Alternatively, J(M, N) is the k-span of the f € Homyg(M, N) that
factor through an indecomposable module that is not isomorphic
to M.



Functors Contd.
We have:

Hom{, (M, —) commutes with &.

Homic(M, M) = Endyg(M)/rad Endig(M) = k  (k algebraically
closed.)

Hom{. (M, N) = 0 if N is indecomposable and not isomorphic to
M.

It follows that dimj Hom{-(M, X) is the number of times that M
occurs in a decomposition of X into indecomposable summands.

Hom{,(M, S) is a finite S®-module.

Thus we obtain the multiplicity of M as a summand of S in each
degree as the graded dimension of a graded noetherian module.

Define S%¢ = Hom?G(k, S). It is naturally a ring: the ring of
trivial summands of S.



The Brauer Construction

For a kG-module M, let MICl = MC /" o pptrf MH.
For simplicity, assume that G is a p-group.

If X is a G-set and k[X] is the space of functions X — k,
considered as a kG-module, then the natural map

K[X €] — k[x]te!
is an isomorphism.

We will consider SI¢!. It is naturally a ring and is finite as an
SC&-module.



Fixed Point Sets

Given H < G, define Iy < S to be the ideal generated by all
elements of the form (h—1)s for h€ G, s € S. Let

| = mHGSylp(G) Iy.

If G is a p-group, then this defines V¢ < V, where V denotes
Spec(S). In general, we get all the points fixed by some Sylow
p-subgroup.

The ideal S® N1 < S¢ gives us V¢ < V/G.



Fixed Point Sets Contd.

Theorem The natural homomorphisms of k-algebras
slel ., §9¢ ., 56 /(56N 1) — (S/1)°
induce universal homeomorphisms on the spectra.

This means that we get homeomorphisms on the spectra that
remain homeomorphisms after any base change.

In characteristic p this is the same as what is sometimes called a
purely inseparable isogeny and is equivalent to the ring
homomorphisms being F-isomorphisms.

This means that the homomorphism of rings has locally nilpotent
kernel and for any element in the codomain, some p"-power is in
the image.

Note that Spec((S/1)¢) = Spec(S)P/Ng(P), where P is a Sylow
p-subgroup.



Fixed Point Sets Contd.

Corollary When G is a p-group and V is a kG-module we have
dim k[V](€] = dim k[V]®C = dim, V©.

One can also work relative to a different class of subgroups. For
example, the trivial subgroup.

Theorem Spec(H°(G; S)) = (Sing, Spec(S))/G, where Sing,
means fixed by an element of order p.



Example: Cyclic Group and Two Variables
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Example Contd.: Cyclic Group and Two Variables
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Depth and Dimension

The previous example easily generalises.

Proposition Let G be a p-group, V a kG-module, dimy V = n,
dimg V¢ = r. Then there are elements di, ..., d, such that:

> k[VC] is finite over k[dy,...,d,],
» there is a finite k[d/+1, ..., ds]G-submodule U < k[V],
> S:k[dl,...,dr]®k U.

Most functors commute with k[di, ..., d;|®k, so we automatically
get depth > r.

We can leverage this.



Depth and Dimension Contd.

Let M be an indecomposable kG-module with vertex P and source
U. The inertia subgroup / is the stabiliser in Ng(P) of the
isomorphism class of U. Let I, denote its Sylow p-subgroup.

Theorem We have
dim Hom- (M, k[V]) < dim V*.
If Hom{ (M, k[V]) # 0, then

depth Hom{- (M, k[V]) > dim V.

Corollary If I, = P then Hom{-(M, k[V]) is Cohen-Macaulay of
dimension dimy VF, in particular if P is a Sylow p-subgroup. The
ring of trivial summands k[V]®€ is always Cohen-Macaulay of
dimension V/©e.



Depth and Dimension Contd.

Hom{. (M, k[V]) is not always Cohen-Macaulay.

In characteristic 0, k[V]® is Gorenstein if det(V) = 1. But even
for a p-group, k[V]®¢ is not always Gorenstein.

If the theorem doesn’t hold for one functor, try another.

Theorem Hom (M, k[V])[®] is Cohen Macaulay of dimension
dim V*.



More General Rings

Results about dimension also apply to general S.
Theorem dim Hom{ (M, S) < dim Spec(S)".

We can also consider equivariant coherent sheaves. These are just
finite graded SG-modules, where SG is the twisted group algebra,
or, alternatively, S-modules with a compatible G action.

Theorem Supp(Hom{;(M, F)) < Spec(S)/G is contained in the
image of Supp(F)P < Spec(S).



More on k[V]

Theorem For k[V] only a finite number of isomorphism types of
indecomposable modules occur.

This is not true in general.

Theorem We have reg Hom{-(M, k[V]) < 0.

reg is the Castelnuovo-Mumford regularity.

It follows that if we know that Hom{.(M, k[V]) is finite over

R = k[dy,...,d,] < k[V]® then Hom} (M, k[V]) has generators

and relations as an R-module in degrees at most ) (degd; — 1).

More is true. If a computer can calculate the multiplicity of M as a
summand of S in degrees up to > (deg d; — 1) then we can deduce
the multiplicity in all degrees.



Finite Group Schemes

Theorem Some of this extends to finite groups schemes with
unipotent identity component.

Avoid vertex. Can use relative projectivity.

The results for fixed points are not true without extra hypotheses
on the action.



Example: o, and Two Variables
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Example Contd.: «, and Two Variables
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Finite Group Schemes

In general, this approach fails.

For example, for sl acting in the obvious way on k[x, y] infinitely
many non-isomorphic indecomposable summands occur.

This seems to be linked to the failure of the Normal Basis
Theorem.

Theorem If a finite group G acts on a field K with fixed field K¢
then, considered as a K¢ G-module, K is free of rank 1.

In the case of sly acting on k(x, y), the action is not even
projective.

The action of sly on k[x, y] is faithful, but the stabiliser of the
generic point is non-trivial.



