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Blocks

• G : finite group

• R: a commutative domain (e.g. Q, C, Fp , F̄p ,. . .)

Consider the group algebra RG .

Blocks
There is a unique factorisation (up to reordering)

RG = B0 ⇥ B1 ⇥ . . .⇥ B` (` 2 N)

for indecomposable R-algebras Bi . We call the Bi the blocks of RG .

Remarks
• This is not unique to group algebras, but the terminology is.
• We write “⇥” since this is a direct product of rings. The Bi are also two-sided

ideals, and RG is their direct sum “�”.
• On the level of representations/module catelgories:

Mod�RG ' Mod�B1 � . . .� Mod�B`

so it makes sense to consider the representation theory of individual blocks.
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Toy example

Take G = S3 and R = C.

“Blocks” of CS3

CS3 ⇠= C⇥ C⇥M2(C)

So the “blocks” of CS3 are C, C and M2(C).

Remark
We usually don’t use the word “block” when R = C.
By Maschke’s theorem CG is semisimple for any finite G , so the only possible “blocks”
are full matrix algebras Mn(C).
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Modular representation theory

Fix a prime p > 0 and set k = F̄p .

More terminology
• A p-block of G is a block of kG .
• If we don’t explicitly specify a group G , a block or block algebra (over k) is a

block of kG for some finite group G .

Example: G = S3, p = 2
Let e = () + (1, 2, 3) + (1, 3, 2) 2 F̄2S3. Then

F̄2S3 = F̄2S3e ⇥ F̄2S3(1 � e) ⇠= F̄2[X ]/(X 2)⇥M2(F̄2)

So F̄2[X ]/(X 2) and M2(F̄2) are 2-blocks of S3, and are therefore “block algebras”.

Question
Can we understand the class of k-algebras that are “block algebras”?
We’re interested in representation theory, so we really only care about their module
categories.
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Morita equivalence

All algebras are assumed finite-dimensional.

Definition
We call k-algebras A and B Morita-equivalent if

Mod�A ' Mod�B (as k-linear abelian categories)

So: two algebras are Morita equivalent if they “have the same representation theory”.

Remark
A ⇠Morita B () 9 idempotents e 2 A and f 2 B not annihilating any simple
modules such that

eAe ⇠= fBf

Typical example: Mn(A) ⇠Morita A since eMn(A)e ⇠= A with e = diag(1, 0, . . . , 0).

Definition
There is a unique/iso. algebra of smallest dimension Morita equivalent to A. We call
this the basic algebra of A (must be of the form eAe for some e 2 A).

A ⇠Morita B () basic algebra of A ⇠= basic algebra of B
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Defect groups

“Definition”
To each block B of kG we attach a p-subgroup D 6 G , unique up to conjugation,
called the defect group of B. We say “B has defect D”.

Question
Can we understand block algebras up to Morita equivalence in terms of their defect
groups?

Some classical examples
• Blocks of trivial defect are Morita equivalent to k,
• Blocks of cyclic defect are “Brauer tree algeras” (Brauer, Dade),
• Blocks of dihedral, semidihedral and(((((generalised quaternion defect (p = 2) are

neatly classified (Erdmann).
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Donovan’s conjecture

Donovan’s Conjecture
Let D be a p-group. Up to Morita equivalence, there are only finitely many block
algebras with defect D.
(we are looking at all group algebras kG for all finite groups G)

Donovan’s conjecture is known for (non-exhaustive)
• cyclic defect (Brauer, Dade)
• dihedral, semidihedral and(((((generalised quaternion defect (p = 2, Erdmann)
• abelian 2-defect (Eaton-E-Livesey)
• blocks of p-solvable groups (Külshammer)

For many problems in modular representation theory, there is a reduction to simple
groups. For Donovan’s conjecture, there is no reduction (yet).

Theorem (Eaton-E-Livesey, 2019)
Donovan’s conjecture for abelian defect groups D over a suitable p-local ring O

reduces to blocks of quasi-simple groups (perfect central extensions of simple groups).
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Block algebras (again)

Donovan’s conjecture suggests that there aren’t that many block algebras.
So what do we know about the class of block algebras in general?

• The group algebra A = kG is a symmetric algebra, i.e.

Homk (A, k) ⇠= A as A-A-bimodules,

and this descends to blocks.
• We know a few things about the number of simple modules and Cartan matrices.
• These are not particularly strong restrictions!
• We don’t know much else!
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Conjectural properties of block algebras

Question (Benson-Kessar, 2007)
Can any block algebra be defined over the finite field Fp2?

That is, given a block
algebra B over F̄p , is there an Fp2 -algebra B0 such that

B ⇠Morita F̄p ⌦F
p2

B0 ?

Or, weaker: can any block algebra be defined over some fixed finite field Fpn?

Theorem (Farrell-Kessar, 2019)
Any block of a quasi-simple group is defined over Fp4 (and possibly even Fp).

Theorem (E-Livesey, 2022)
For any n there are block algebras that cannot be defined over a field of size < p

n.
So the answer to the original question is disappointingly "no". Block algebras can be
highly irrational.
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Conjectural properties of block algebras

Conjecture (Donald-Flanigan, 1974)
Any block algebra has a semisimple deformation.

That is, given a block algebra B over
k there are

• a semisimple k((t))-algebra A. In a strong form of the conjecture

A = Mn1 (k((t)))⇥Mn2 (k((t)))⇥ . . .⇥Mn` (k((t))),

where n1, . . . , n` are the degrees of the irreducible characters belonging to the
block.

• a k[[t]]-subalgebra ⇤ ⇢ A such that
• ⇤ is finitely generated as a k[[t]]-module,
• ⇤ spans A as a k((t))-vector space.

(we say “⇤ is a k[[t]]-order in A”)
• ⇤/t⇤ ⇠= B.

This is open! (Barnea-Ginosar, 2008, proved that F̄2Q8 is not a counterexample)
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A different coefficient ring

Let O = W (k) be the ring of Witt vectors over k.

That is
• O is a commtative domain of characteristic 0.
• O is local with maximal ideal pO.
• O is complete w.r.t. the topology with {p

i
O | i 2 N} open neighbourhoods of 0.

• O/pO ⇠= k.
Set K = frac(O), the field of fractions of O.

Remarks
• O is a complete discrete valuation ring, an extension of the p-adic integers Zp .
• For any finite group G we have

• KG is semismple,
• OG ⇢ KG is finitely generated as an O-module and spans KG as a K -vector space,
• OG/pOG ⇠= kG .

This descends to blocks!
• Formally, k[[t]] and O share many properties, but O has characteristic zero.
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Example: G = S3, p = 3



Block algebras over O

Properties of block algebras over O
• Block algebras over O are orders in a semisimple K -algebra.

• Block algebras over O are symmetric with an explicit symmetrising form given in
terms of traces.

• Block algebras over O have trivial first Hochschild cohomology.
That is, if � : ⇤ �! ⇤ is a derivation, i.e. �(xy) = �(x)y + x�(y), then
�(�) = [a,�] for some a 2 ⇤.

So we do know a bit more about block algebras over O than over k.

Question (Boltje-Kessar-Linckelmann, 2020)
Given a block algebra ⇤ over O, is its outer automorphism group

Out(⇤) = Aut(⇤)/Inn(⇤)

finite?
Equivalently: is the group of Morita auto-equivalences Pic(⇤) finite?
This played a role in the reduction result Donovan’s conjecture for abelian defect
mentioned before (which required to work over O).
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A new property of block algebras over O

Theorem (E, 2021)
If ⇤ is a block algebra over O, then Out(⇤) is finite.

Remarks
• This would be completely false for block algebras over k.
• For a finite-dimensional algebra, vanishing first Hochschild cohomology does

imply finite outer automorphism group. But: block algebras over k don’t have this
property.

• The above also follows from vanishing first Hochschild cohomology, adapting the
deformation theory over k to O. E.g. we define “varieties of ⇤-lattices” to replace
the classical “varieties of modules”. These are still algebraic varieties over k.

• More is true: if ⇤ is a block algebra, then there are only finitely many lattices L of
any given rank with Ext1(L, L) = 0 (“rigid” lattices).
This includes permutation lattices, but is a purely representation theoretic
property.
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How a proof would look over k[[t]] instead of O

Take a k[[t]]-order ⇤ in a semisimple k((t))-algebra A. Assume HH
1(⇤) = 0.

• One can show that

Out(⇤) ⇠= Im(Out(⇤/tm⇤) �! Out(⇤/tn⇤))

for m � n � 1 both sufficiently large (Higman, Maranda).

• This makes Out(⇤) a closed subgroup of the affine algebraic group Out(⇤/tn⇤).
• To show it is finite, determine its Lie algebra! Consider points over k["]/("2).
• Let ↵ = id+"� 2 Aut(k["]/("2)⌦k ⇤). Then � is a derivation on ⇤.
• Since the first Hochschild cohomology is trivial, � = [a,�] for some a 2 ⇤.
• So: ↵ is conjugation by 1 + "a. So ↵ is trivial in Out(k["]/("2)⌦k ⇤).
• So: the Lie algebra of Out(⇤) is trivial =) Out(⇤) is finite.
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Witt vectors

The previous argument ultimately carries over to O = W (k).

What exactly is W (k)?
As a set, we can define W (k) = k[[t]], with multiplication and addition

 
X

i

ai t
i

!
⇥

 
X

i

bi t
i

!
=
X

i

µi (a0, . . . , ai , b0, . . . , bi )t
i

 
X

i

ai t
i

!
+

 
X

i

bi t
i

!
=
X

i

�i (a0, . . . , ai , b0, . . . , bi )t
i

for certain polynomials �i , µi 2 k[X0, . . . ,Xi ,Y0, . . . ,Yi ].

Remarks
• The polynomials �i and µi are explicit, but complicated.
• p in W (k) corresponds to t in k[[t]].
• t ⇥ (b0 + b1t + b2t2 + . . .) = b

p

0t + b
p

1t
2 + b

p

2t
3 + . . .

• An easy consequence is that GLn(O/pmO) is an algebraic group over k.



Witt vectors

The previous argument ultimately carries over to O = W (k).

What exactly is W (k)?
As a set, we can define W (k) = k[[t]], with multiplication and addition

 
X

i

ai t
i

!
⇥

 
X

i

bi t
i

!
=
X

i

µi (a0, . . . , ai , b0, . . . , bi )t
i

 
X

i

ai t
i

!
+

 
X

i

bi t
i

!
=
X

i

�i (a0, . . . , ai , b0, . . . , bi )t
i

for certain polynomials �i , µi 2 k[X0, . . . ,Xi ,Y0, . . . ,Yi ].

Remarks
• The polynomials �i and µi are explicit, but complicated.

• p in W (k) corresponds to t in k[[t]].
• t ⇥ (b0 + b1t + b2t2 + . . .) = b

p

0t + b
p

1t
2 + b

p

2t
3 + . . .

• An easy consequence is that GLn(O/pmO) is an algebraic group over k.



Witt vectors

The previous argument ultimately carries over to O = W (k).

What exactly is W (k)?
As a set, we can define W (k) = k[[t]], with multiplication and addition

 
X

i

ai t
i

!
⇥

 
X

i

bi t
i

!
=
X

i

µi (a0, . . . , ai , b0, . . . , bi )t
i

 
X

i

ai t
i

!
+

 
X

i

bi t
i

!
=
X

i

�i (a0, . . . , ai , b0, . . . , bi )t
i

for certain polynomials �i , µi 2 k[X0, . . . ,Xi ,Y0, . . . ,Yi ].

Remarks
• The polynomials �i and µi are explicit, but complicated.
• p in W (k) corresponds to t in k[[t]].

• t ⇥ (b0 + b1t + b2t2 + . . .) = b
p

0t + b
p

1t
2 + b

p

2t
3 + . . .

• An easy consequence is that GLn(O/pmO) is an algebraic group over k.



Witt vectors

The previous argument ultimately carries over to O = W (k).

What exactly is W (k)?
As a set, we can define W (k) = k[[t]], with multiplication and addition

 
X

i

ai t
i

!
⇥

 
X

i

bi t
i

!
=
X

i

µi (a0, . . . , ai , b0, . . . , bi )t
i

 
X

i

ai t
i

!
+

 
X

i

bi t
i

!
=
X

i

�i (a0, . . . , ai , b0, . . . , bi )t
i

for certain polynomials �i , µi 2 k[X0, . . . ,Xi ,Y0, . . . ,Yi ].

Remarks
• The polynomials �i and µi are explicit, but complicated.
• p in W (k) corresponds to t in k[[t]].
• t ⇥ (b0 + b1t + b2t2 + . . .) = b

p

0t + b
p

1t
2 + b

p

2t
3 + . . .

• An easy consequence is that GLn(O/pmO) is an algebraic group over k.



Witt vectors

The previous argument ultimately carries over to O = W (k).

What exactly is W (k)?
As a set, we can define W (k) = k[[t]], with multiplication and addition

 
X

i

ai t
i

!
⇥

 
X

i

bi t
i

!
=
X

i

µi (a0, . . . , ai , b0, . . . , bi )t
i

 
X

i

ai t
i

!
+

 
X

i

bi t
i

!
=
X

i

�i (a0, . . . , ai , b0, . . . , bi )t
i

for certain polynomials �i , µi 2 k[X0, . . . ,Xi ,Y0, . . . ,Yi ].

Remarks
• The polynomials �i and µi are explicit, but complicated.
• p in W (k) corresponds to t in k[[t]].
• t ⇥ (b0 + b1t + b2t2 + . . .) = b

p

0t + b
p

1t
2 + b

p

2t
3 + . . .

• An easy consequence is that GLn(O/pmO) is an algebraic group over k.



How a proof would look over k[[t]] instead of O

Take a k[[t]]-order ⇤ in a semisimple k((t))-algebra A. Assume HH
1(⇤) = 0.

• One can show that

Out(⇤) ⇠= Im(Out(⇤/tm⇤) �! Out(⇤/tn⇤))

for m � n � 1 both sufficiently large (Higman, Maranda).
• This makes Out(⇤) a closed subgroup of the affine algebraic group Out(⇤/tn⇤).
• To show it is finite, determine its Lie algebra! Consider points over k["]/("2).
• Let ↵ = id+"� 2 Aut(k["]/("2)⌦k ⇤). Then � is a derivation on ⇤.
• Since the first Hochschild cohomology is trivial, � = [a,�] for some a 2 ⇤.
• So: ↵ is conjugation by 1 + "a. So ↵ is trivial in Out(k["]/("2)⌦k ⇤).
• So: the Lie algebra of Out(⇤) is trivial =) Out(⇤) is finite.

wher

Works over O basically as is

j
j
becomes Aut(W(R(2]/2) /1)

use R((xVP9]] instead of R[E]/22 ·



Thank you for your attention!


