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Tensor factorizations

▶ k field.

▶ A k-algebra.

Definition
A has the tensor Krull-Schmidt property if whenever

▶ A ∼=
⊗n

i=1 Ai
∼=

⊗m
j=1 Bj , and

▶ each of the Ai ’s and Bj ’s is tensor indecomposable,

then n = m and Ai
∼= Bi after (possibly) rearranging the indices.

This is not the case in general:

C⊗R H ∼= C⊗R M2(R),

where H is the ring of real quaternions.
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Tensor factorizations of local algebras

There are no examples of local algebras for which the tensor
Krull-Schmidt property fails.

▶ Let Lk be the class of local augmented k-algebras.

Theorem (Horst, 1987)

Suppose that

1. char(k) = 0,

2. N ⊗ R ∼= N ⊗ S in Lk , and

3. R is noetherian and N artinan.

Then R ∼= S .
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Tensor factorizations of local algebras

Theorem (Horst, 1987)

Suppose that

1. char(k) = 0,

2. A ∈ Lk is noetherian.

Then there is a decomposition

A ∼= B ⊗ A1 ⊗ · · · ⊗ An

such that

1. each Ai is tensor indecomposable, and

2. B has no artinian tensor factors.

Moreover, this decomposition is unique up to isomorphism and
reordering.

No analogue is known when char(p) > 0.
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Tensor factorizations of local group algebras

In 1995 Carson and Kovacs addressed this problem restricted to
group rings.

▶ k field of characteristic p,

▶ G finite p-group.

Observe that

{group rings over k} ∩ Lk = p-group rings over k

Question
Does kG have the Krull-Schmidt property in Lk?
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Tensor factorizations of local commutative group algebras

Theorem (Carlson-Kovacs, 1995)

Suppose that

1. G abelian finite p-group, and

2. kG = A1 ⊗ A2.

Then G = G1 × G2 such that Ai
∼= kGi for each i .

This implies that kG , if G is abelian, has the tensor Krull-Schmidt
property.
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Questions on modular p-group algebras

Let’s drop the commutativity assumption.

Question

▶ Does every tensor factorization of kG come from a direct
decomposition of G?

▶ Does every directly indecomposable group have tensor
indecomposable group algebra over k?
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Tensor factorizations with a commutative factor

Does every tensor factorization of kG come from a direct
decomposition of G?

Theorem (GL-del Ŕıo-Sakurai, in progress)

Suppose that

1. FpG = A1 ⊗ A2, and

2. A1 is commutative.

Then G = G1 × G2 and Ai
∼= FpGi for each i .

This implies that FpG admits a unique decomposition A1 ⊗ A2

with A1 commutative and A2 without commutative tensor factors.
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Tensor indecomposability

Does every directly indecomposable group have tensor
indecomposable group algebra over k?

Carlson and Kovacs consider this last question in their paper,
providing a positive answer if

▶ either G is abelian,

▶ or G has order 8.

Corollary (GL, del Ŕıo, Sakurai)

Suppose that G is indecomposable and

▶ either G can be generated by 3 elements, or

▶ G ′ is cyclic.

Then FpG is indecomposable.
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More questions on modular p-group algebras

Question
What information about G can be recovered from kG?

And how?

Question (Modular Isomorphism Problem)

Can the isomorphism type of G be recovered from FpG?

Answer :

▶ If p = 2, it can’t (GL-Margolis-del Ŕıo, 2022).

▶ If p > 2, we do not know.
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The modular isomorphism problem

Question (Modular Isomorphism Problem)

Can the isomorphism type of G be recovered from FpG?

Yes, provided that one of the following holds:

▶ G is abelian (Deskins, 1956).

▶ G is metacyclic (Bagiński 1988, Sandling 1996).

▶ γ2(G )pγ3(G ) = 1 (Sandling, 1989).

▶ . . .
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The modular isomorphism problem

Theorem (GL-Brenner)

Suppose that

▶ p > 2 and

▶ |G : Z(G )| ≤ p3.

Then the isomorphism type of G can be recovered from FpG .

Theorem (GL-del Ŕıo)

Suppose that

▶ p > 2,

▶ G can be generated by 2 elements,

▶ G ′ is cyclic, and

▶ either |G ′| ≤ p3 or |γ3(G )| ≤ p.

Then the isomorphism type of G is determined by FpG .

These results both fail when p = 2.
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Thanks for your attention.


