Some problems on modular group algebras

Diego García-Lucas

Universidad de Murcia, Spain

Groups and their actions Levico Terme, 2024

Grant PID2020-113206GB-I00 funded by

Tensor factorizations

k field. *A k*-algebra.

Tensor factorizations

► k field.

Definition

A has the tensor Krull-Schmidt property if whenever

•
$$A \cong \bigotimes_{i=1}^n A_i \cong \bigotimes_{j=1}^m B_j$$
, and

each of the A_i's and B_j's is tensor indecomposable,

then n = m and $A_i \cong B_i$ after (possibly) rearranging the indices.

Tensor factorizations

► k field.

Definition

A has the tensor Krull-Schmidt property if whenever

•
$$A \cong \bigotimes_{i=1}^n A_i \cong \bigotimes_{j=1}^m B_j$$
, and

each of the A_i's and B_j's is tensor indecomposable,

then n = m and $A_i \cong B_i$ after (possibly) rearranging the indices.

This is not the case in general:

$$\mathbb{C}\otimes_{\mathbb{R}}\mathbb{H}\cong\mathbb{C}\otimes_{\mathbb{R}}M_2(\mathbb{R}),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where \mathbb{H} is the ring of real quaternions.

There are no examples of local algebras for which the tensor Krull-Schmidt property fails.

There are no examples of local algebras for which the tensor Krull-Schmidt property fails.

• Let \mathbb{L}_k be the class of local augmented *k*-algebras.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Horst, 1987)

Suppose that

- 1. char(k) = 0,
- 2. $N \otimes R \cong N \otimes S$ in \mathbb{L}_k , and

3. *R* is noetherian and *N* artinan. Then $R \cong S$.

Theorem (Horst, 1987) Suppose that

- 1. char(k) = 0,
- 2. $A \in \mathbb{L}_k$ is noetherian.

Then there is a decomposition

$$A\cong B\otimes A_1\otimes\cdots\otimes A_n$$

such that

1. each A_i is tensor indecomposable, and

2. B has no artinian tensor factors.

Moreover, this decomposition is unique up to isomorphism and reordering.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Horst, 1987) Suppose that

- 1. char(k) = 0,
- 2. $A \in \mathbb{L}_k$ is noetherian.

Then there is a decomposition

$$A\cong B\otimes A_1\otimes\cdots\otimes A_n$$

such that

- 1. each A_i is tensor indecomposable, and
- 2. B has no artinian tensor factors.

Moreover, this decomposition is unique up to isomorphism and reordering.

No analogue is known when char(p) > 0.

In 1995 Carson and Kovacs addressed this problem restricted to group rings.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- k field of characteristic p,
- ► *G* finite *p*-group.

In 1995 Carson and Kovacs addressed this problem restricted to group rings.

- k field of characteristic p,
- ► *G* finite *p*-group.

Observe that

 $\{\text{group rings over } k\} \cap \mathbb{L}_k = p\text{-group rings over } k$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

In 1995 Carson and Kovacs addressed this problem restricted to group rings.

- k field of characteristic p,
- ► *G* finite *p*-group.

Observe that

 $\{\text{group rings over } k\} \cap \mathbb{L}_k = p\text{-group rings over } k$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Question

Does kG have the Krull-Schmidt property in \mathbb{L}_k ?

Tensor factorizations of local commutative group algebras

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (Carlson-Kovacs, 1995)

Suppose that

- 1. G abelian finite p-group, and
- 2. $kG = A_1 \otimes A_2$.

Then $G = G_1 \times G_2$ such that $A_i \cong kG_i$ for each *i*.

Tensor factorizations of local commutative group algebras

Theorem (Carlson-Kovacs, 1995)

Suppose that

- 1. G abelian finite p-group, and
- 2. $kG = A_1 \otimes A_2$.

Then $G = G_1 \times G_2$ such that $A_i \cong kG_i$ for each *i*.

This implies that kG, if G is abelian, has the tensor Krull-Schmidt property.

Tensor factorizations of local commutative group algebras

Theorem (Carlson-Kovacs, 1995)

Suppose that

- 1. G abelian finite p-group, and
- 2. $kG = A_1 \otimes A_2$.

Then $G = G_1 \times G_2$ such that $A_i \cong kG_i$ for each *i*.

This implies that kG, if G is abelian, has the tensor Krull-Schmidt property.

Let's drop the commutativity assumption.

Question

Does every tensor factorization of kG come from a direct decomposition of G?

Let's drop the commutativity assumption.

Question

Does every tensor factorization of kG come from a direct decomposition of G?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Does every directly indecomposable group have tensor indecomposable group algebra over k? Tensor factorizations with a commutative factor

Does every tensor factorization of kG come from a direct decomposition of G?

Theorem (GL-del Río-Sakurai, in progress) *Suppose that*

1. $\mathbb{F}_p G = A_1 \otimes A_2$, and

2. A_1 is commutative.

Then $G = G_1 \times G_2$ and $A_i \cong \mathbb{F}_p G_i$ for each *i*.

Tensor factorizations with a commutative factor

Does every tensor factorization of kG come from a direct decomposition of G?

Theorem (GL-del Río-Sakurai, in progress) *Suppose that*

1. $\mathbb{F}_p G = A_1 \otimes A_2$, and

2. A_1 is commutative.

Then $G = G_1 \times G_2$ and $A_i \cong \mathbb{F}_p G_i$ for each *i*.

This implies that $\mathbb{F}_p G$ admits a unique decomposition $A_1 \otimes A_2$ with A_1 commutative and A_2 without commutative tensor factors.

Tensor indecomposability

Does every directly indecomposable group have tensor indecomposable group algebra over *k*?

Tensor indecomposability

Does every directly indecomposable group have tensor indecomposable group algebra over k?

Carlson and Kovacs consider this last question in their paper, providing a positive answer if

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- either G is abelian,
- ▶ or *G* has order 8.

Tensor indecomposability

Does every directly indecomposable group have tensor indecomposable group algebra over *k*?

Carlson and Kovacs consider this last question in their paper, providing a positive answer if

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- either G is abelian,
- or G has order 8.

Corollary (GL, del Río, Sakurai)

Suppose that G is indecomposable and

- either G can be generated by 3 elements, or
- ► G' is cyclic.

Then $\mathbb{F}_p G$ is indecomposable.

Question

What information about G can be recovered from kG?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question

What information about G can be recovered from kG? And how?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question

What information about G can be recovered from kG? And how?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question (Modular Isomorphism Problem) Can the isomorphism type of G be recovered from \mathbb{F}_pG ?

Question

What information about G can be recovered from kG? And how?

Question (Modular Isomorphism Problem)

Can the isomorphism type of G be recovered from \mathbb{F}_pG ? Answer:

- If p = 2, it can't (GL-Margolis-del Río, 2022).
- If p > 2, we do not know.

Question (Modular Isomorphism Problem) Can the isomorphism type of G be recovered from \mathbb{F}_pG ?

Yes, provided that one of the following holds:

► G is abelian (Deskins, 1956).

...

► G is metacyclic (Bagiński 1988, Sandling 1996).

• $\gamma_2(G)^p \gamma_3(G) = 1$ (Sandling, 1989).

Question (Modular Isomorphism Problem) Can the isomorphism type of G be recovered from \mathbb{F}_pG ?

Yes, provided that one of the following holds:

► G is abelian (Deskins, 1956).

...

► G is metacyclic (Bagiński 1988, Sandling 1996).

• $\gamma_2(G)^p \gamma_3(G) = 1$ (Sandling, 1989).

Theorem (GL-Brenner)

Suppose that

- ▶ *p* > 2 and
- $\blacktriangleright |G: \mathsf{Z}(G)| \leq p^3.$

Then the isomorphism type of G can be recovered from \mathbb{F}_pG .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (GL-Brenner)

Suppose that

 $|G: \mathsf{Z}(G)| \leq p^3.$

Then the isomorphism type of G can be recovered from \mathbb{F}_pG .

Theorem (GL-del Río)

Suppose that

- ▶ p > 2,
- G can be generated by 2 elements,
- G' is cyclic, and
- either $|G'| \leq p^3$ or $|\gamma_3(G)| \leq p$.

Then the isomorphism type of G is determined by \mathbb{F}_pG .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (GL-Brenner)

Suppose that

$$|G: \mathsf{Z}(G)| \le p^3.$$

Then the isomorphism type of G can be recovered from \mathbb{F}_pG .

Theorem (GL-del Río)

Suppose that

- ▶ p > 2,
- G can be generated by 2 elements,
- G' is cyclic, and
- either $|G'| \leq p^3$ or $|\gamma_3(G)| \leq p$.

Then the isomorphism type of G is determined by \mathbb{F}_pG .

These results both fail when p = 2.

Thanks for your attention.