From extension of groups to realization-obstruction of graded algebras and back

Yuval Ginosar University of Haifa

 $\langle \Box \rangle \langle \Box \rangle$

Yuval Ginosar University of Haifa

Let us recall the theory of group extensions (Schreier 1920's, Eilenberg-MacLane 1940's).

イロン イヨン イヨン ・

Let us recall the theory of group extensions (Schreier 1920's, Eilenberg-MacLane 1940's).

Given a group extension

$$1 \rightarrow N \rightarrow \Gamma \xrightarrow{\pi} G \rightarrow 1,$$

together with a section $\begin{array}{ccc} G & \rightarrow & \Gamma \\ g & \mapsto & u_g \end{array}$ of π , there is a unique way to write an element in Γ as nu_g , where $n \in N$ and $g \in G$.

Let us recall the theory of group extensions (Schreier 1920's, Eilenberg-MacLane 1940's).

Given a group extension

$$1 \rightarrow N \rightarrow \Gamma \xrightarrow{\pi} G \rightarrow 1,$$

together with a section $\begin{array}{cc} G \rightarrow & \Gamma \\ g \mapsto & u_g \end{array}$ of π , there is a unique way to write an element in Γ as nu_g , where $n \in N$ and $g \in G$. Multiplying two such elements we obtain a 2-place function $\alpha : G \times G \rightarrow N$ such that

$$u_g u_h = \alpha(g, h) u_{gh}, \ \forall g, h \in G$$

イロン イヨン イヨン

Let us recall the theory of group extensions (Schreier 1920's, Eilenberg-MacLane 1940's).

Given a group extension

$$1 \rightarrow N \rightarrow \Gamma \xrightarrow{\pi} G \rightarrow 1,$$

together with a section $\begin{array}{cc} G \rightarrow & \Gamma \\ g \mapsto & u_g \end{array}$ of π , there is a unique way to write an element in Γ as nu_g , where $n \in N$ and $g \in G$. Multiplying two such elements we obtain a 2-place function $\alpha : G \times G \rightarrow N$ such that

$$u_g u_h = \alpha(g, h) u_{gh}, \ \forall g, h \in G$$

as well as an automorphism $\eta_g \in Aut(N)$ for every $g \in G$ such that

$$\eta_g(n) = u_g n u_g^{-1} =: \widehat{u_g}(n).$$

N abelian

If N is abelian then $\eta: \begin{array}{cc} G \rightarrow \operatorname{Aut}(N) \\ g \mapsto \eta_g \end{array}$ is a group homomorphism, and $\alpha: G \times G \rightarrow N$ is a 2-cocycle, where N is a G-module via this action η .

N abelian

If N is abelian then $\eta : \begin{array}{cc} G \rightarrow \operatorname{Aut}(N) \\ g \mapsto \eta_g \end{array}$ is a group homomorphism, and $\alpha : G \times G \rightarrow N$ is a 2-cocycle, where N is a G-module via this action η . Different choices of sections

$$\begin{array}{ccc} G &
ightarrow & \Gamma \\ g & \mapsto & v_g \end{array}$$

yield the same G-action on N.

N abelian

If N is abelian then $\eta : \begin{array}{cc} G & \to & \operatorname{Aut}(N) \\ g & \mapsto & \eta_g \end{array}$ is a group homomorphism, and $\alpha : G \times G \to N$ is a 2-cocycle, where N is a G-module via this action η . Different choices of sections

$$egin{array}{ccc} G & o & \mathsf{\Gamma} \ g & \mapsto & v_g \end{array}$$

yield the same G-action on N.

The corresponding 2-cocycles are cohomologous to α .

When N is not necessarily abelian, then η is not necessarily a homomorphism.

イロン イヨン イヨン ・

æ

When N is not necessarily abelian, then η is not necessarily a homomorphism.

For example, the section u_e of the identity $e \in G$ may not be central in N.

イロン イヨン イヨン

When N is not necessarily abelian, then η is not necessarily a homomorphism.

For example, the section u_e of the identity $e \in G$ may not be central in N. Then $\eta(e) = \hat{u_e}$ is not the trivial N-automorphism.

臣

When N is not necessarily abelian, then η is not necessarily a homomorphism.

For example, the section u_e of the identity $e \in G$ may not be central in N. Then $\eta(e) = \hat{u_e}$ is not the trivial N-automorphism. However, we have

$$\eta_{g} \circ \eta_{h} = \widehat{\alpha(g,h)} \circ \eta_{gh}, \ \forall g,h \in G.$$

臣

When N is not necessarily abelian, then η is not necessarily a homomorphism.

For example, the section u_e of the identity $e \in G$ may not be central in N. Then $\eta(e) = \hat{u_e}$ is not the trivial N-automorphism. However, we have

$$\eta_{g} \circ \eta_{h} = \widehat{\alpha(g,h)} \circ \eta_{gh}, \ \forall g,h \in G.$$

 $\begin{array}{ll} \text{A different section} & \begin{array}{c} G & \rightarrow & \Gamma \\ g & \mapsto & v_g = n_g u_g \end{array} \text{ for some } \{n_g\}_{g \in G} \subset N \\ \text{yields another map } G \rightarrow \operatorname{Aut}(N), \text{ which differs from } \eta \text{ by } \{\widehat{n_g}\}_{g \in G}. \end{array}$

3

When N is not necessarily abelian, then η is not necessarily a homomorphism.

For example, the section u_e of the identity $e \in G$ may not be central in N. Then $\eta(e) = \hat{u_e}$ is not the trivial N-automorphism. However, we have

$$\eta_{g} \circ \eta_{h} = \widehat{\alpha(g,h)} \circ \eta_{gh}, \ \forall g,h \in G.$$

A different section $\begin{array}{cc} G \to & \Gamma \\ g \mapsto & v_g = n_g u_g \end{array}$ for some $\{n_g\}_{g \in G} \subset N$ yields another map $G \to \operatorname{Aut}(N)$, which differs from η by $\{\widehat{n_g}\}_{g \in G}$. Then an extension gives rise to an **outer action**

 $\bar{\eta} \in \operatorname{Hom}(G, \operatorname{Out}(N)), \quad \operatorname{Out}(N) := \operatorname{Aut}(N)/\operatorname{Inn}(N).$

・ロト ・回ト ・ヨト ・ヨト … ヨ

When N is not necessarily abelian, then η is not necessarily a homomorphism.

For example, the section u_e of the identity $e \in G$ may not be central in N. Then $\eta(e) = \hat{u_e}$ is not the trivial N-automorphism. However, we have

$$\eta_{g} \circ \eta_{h} = \widehat{\alpha(g,h)} \circ \eta_{gh}, \ \forall g,h \in G.$$

A different section $\begin{array}{ccc} G \to & \Gamma \\ g \mapsto & v_g = n_g u_g \end{array}$ for some $\{n_g\}_{g \in G} \subset N$ yields another map $G \to \operatorname{Aut}(N)$, which differs from η by $\{\widehat{n_g}\}_{g \in G}$. Then an extension gives rise to an **outer action**

 $\bar{\eta} \in \operatorname{Hom}(G, \operatorname{Out}(N)), \quad \operatorname{Out}(N) := \operatorname{Aut}(N)/\operatorname{Inn}(N).$

イロン 不同 とうほう 不同 とう

The extension is said to be **of type** $\bar{\eta}$.

Developing the associativity assumption $u_{g_1}(u_{g_2}u_{g_3}) = (u_{g_1}u_{g_2})u_{g_3}$ for every $g_1, g_2, g_3 \in G$ we have

$$(\spadesuit) \ \partial \alpha \equiv 1,$$

イロト イヨト イヨト イヨト

3

Developing the associativity assumption $u_{g_1}(u_{g_2}u_{g_3}) = (u_{g_1}u_{g_2})u_{g_3}$ for every $g_1, g_2, g_3 \in G$ we have

$$(\spadesuit) \ \partial \alpha \equiv 1,$$

where

 $\partial \alpha(g_1, g_2, g_3) := \alpha(g_1, g_2 g_3)^{-1} \cdot \eta_{g_1}(\alpha(g_2, g_3))^{-1} \cdot \alpha(g_1, g_2) \cdot \alpha(g_1 g_2, g_3).$

イロト イヨト イヨト イヨト

3

Developing the associativity assumption $u_{g_1}(u_{g_2}u_{g_3}) = (u_{g_1}u_{g_2})u_{g_3}$ for every $g_1, g_2, g_3 \in G$ we have

$$(\spadesuit) \ \partial \alpha \equiv 1,$$

where

$$\partial \alpha(g_1, g_2, g_3) := \alpha(g_1, g_2 g_3)^{-1} \cdot \eta_{g_1}(\alpha(g_2, g_3))^{-1} \cdot \alpha(g_1, g_2) \cdot \alpha(g_1 g_2, g_3).$$

Given a lifting $\eta : G \to \operatorname{Aut}(N)$ of an outer action $\overline{\eta} \in \operatorname{Hom}(G, \operatorname{Out}(N))$, we denote a map $\alpha : G \times G \to N$ satisfying (\blacklozenge) by an η -twisting.

イロト イヨト イヨト イヨト

Developing the associativity assumption $u_{g_1}(u_{g_2}u_{g_3}) = (u_{g_1}u_{g_2})u_{g_3}$ for every $g_1, g_2, g_3 \in G$ we have

$$(\spadesuit) \ \partial \alpha \equiv 1,$$

where

$$\partial \alpha(g_1, g_2, g_3) := \alpha(g_1, g_2 g_3)^{-1} \cdot \eta_{g_1}(\alpha(g_2, g_3))^{-1} \cdot \alpha(g_1, g_2) \cdot \alpha(g_1 g_2, g_3).$$

Given a lifting $\eta : G \to \operatorname{Aut}(N)$ of an outer action $\overline{\eta} \in \operatorname{Hom}(G, \operatorname{Out}(N))$, we denote a map $\alpha : G \times G \to N$ satisfying (\blacklozenge) by an η -twisting.

イロト イヨト イヨト イヨト

Certainly, the outer action $\bar{\eta}$ gives rise to a *G*-module structure on the center $\mathcal{Z}(N)$ which is independent of a specific lifting.

イロト イヨト イヨト イヨト

Certainly, the outer action $\bar{\eta}$ gives rise to a *G*-module structure on the center $\mathcal{Z}(N)$ which is independent of a specific lifting. We continue to call this action $\eta : G \to \operatorname{Aut}(\mathcal{Z}(N))$.

Certainly, the outer action $\bar{\eta}$ gives rise to a *G*-module structure on the center $\mathcal{Z}(N)$ which is independent of a specific lifting. We continue to call this action $\eta : G \to \operatorname{Aut}(\mathcal{Z}(N))$. The cocycle group $Z^2_{\eta}(G, \mathcal{Z}(N))$ acts on the set of η -twistings by pointwise multiplication.

Certainly, the outer action $\bar{\eta}$ gives rise to a *G*-module structure on the center $\mathcal{Z}(N)$ which is independent of a specific lifting. We continue to call this action $\eta : G \to \operatorname{Aut}(\mathcal{Z}(N))$. The cocycle group $Z^2_{\eta}(G, \mathcal{Z}(N))$ acts on the set of η -twistings by pointwise multiplication.

This action is shown to be free and transitive, yielding a (non-canonical) 1-1 correspondence between these sets.

Certainly, the outer action $\bar{\eta}$ gives rise to a *G*-module structure on the center $\mathcal{Z}(N)$ which is independent of a specific lifting. We continue to call this action $\eta : G \to \operatorname{Aut}(\mathcal{Z}(N))$. The cocycle group $Z_{\eta}^{2}(G, \mathcal{Z}(N))$ acts on the set of η -twistings by pointwise multiplication. This action is shown to be free and transitive, yielding a (non-canonical) 1-1 correspondence between these sets. It induces

a free and transitive action of the cohomology group $H^2_{\eta}(G, \mathcal{Z}(N))$ on the set of type- $\overline{\eta}$ extensions up to equivalence.

When $\eta: G \to \operatorname{Aut}(N)$ is already a homomorphism (even before moding out by $\operatorname{Inn}(N)$), e.g. when N is abelian, there is a distinguished extension of type $\overline{\eta}$, namely the **semidirect product** $N \rtimes_{\eta} G$.

イロト イヨト イヨト

When $\eta: G \to \operatorname{Aut}(N)$ is already a homomorphism (even before moding out by $\operatorname{Inn}(N)$), e.g. when N is abelian, there is a distinguished extension of type $\overline{\eta}$, namely the **semidirect product** $N \rtimes_{\eta} G$.

イロト イヨト イヨト

In this case, the identification of type- $\bar{\eta}$ extensions with $H^2_{\eta}(G, \mathcal{Z}(N))$ is as abelian groups.

When $\eta: G \to \operatorname{Aut}(N)$ is already a homomorphism (even before moding out by $\operatorname{Inn}(N)$), e.g. when N is abelian, there is a distinguished extension of type $\overline{\eta}$, namely the **semidirect product** $N \rtimes_{\eta} G$.

In this case, the identification of type- $\bar{\eta}$ extensions with $H_n^2(G, \mathcal{Z}(N))$ is as abelian groups.

If $\eta: G \to Aut(N)$ is not an action, then there is no meaning to a semidirect product.

When $\eta: G \to \operatorname{Aut}(N)$ is already a homomorphism (even before moding out by $\operatorname{Inn}(N)$), e.g. when N is abelian, there is a distinguished extension of type $\overline{\eta}$, namely the **semidirect product** $N \rtimes_{\eta} G$.

In this case, the identification of type- $\bar{\eta}$ extensions with $H_n^2(G, \mathcal{Z}(N))$ is as abelian groups.

If $\eta: G \to Aut(N)$ is not an action, then there is no meaning to a semidirect product.

イロト イヨト イヨト イヨト

In fact, it is not even clear if there is any extension of type $\bar{\eta}$.

When $\eta: G \to \operatorname{Aut}(N)$ is already a homomorphism (even before moding out by $\operatorname{Inn}(N)$), e.g. when N is abelian, there is a distinguished extension of type $\overline{\eta}$, namely the **semidirect product** $N \rtimes_{\eta} G$.

In this case, the identification of type- $\bar{\eta}$ extensions with $H_n^2(G, \mathcal{Z}(N))$ is as abelian groups.

If $\eta: G \to Aut(N)$ is not an action, then there is no meaning to a semidirect product.

イロト イヨト イヨト イヨト

In fact, it is not even clear if there is *any* extension of type $\bar{\eta}$. **Question.** How to check that?

```
Let \eta: G \to \operatorname{Aut}(N) be a lifting of the outer action \overline{\eta} \in \operatorname{Hom}(G, \operatorname{Out}(N)).
```

イロト イヨト イヨト イヨト

3

Let $\eta: G \to \operatorname{Aut}(N)$ be a lifting of the outer action $\overline{\eta} \in \operatorname{Hom}(G, \operatorname{Out}(N))$. Then for every $g, h \in G$ the *N*-automorphisms $\eta(g) \circ \eta(h)$ and $\eta(gh)$ differ by an inner automorphism.

イロト イヨト イヨト イヨト

3

Let $\eta : G \to \operatorname{Aut}(N)$ be a lifting of the outer action $\overline{\eta} \in \operatorname{Hom}(G, \operatorname{Out}(N))$. Then for every $g, h \in G$ the *N*-automorphisms $\eta(g) \circ \eta(h)$ and $\eta(gh)$ differ by an inner automorphism. That is, $\exists \beta(g, h) \in N$, determined up to a central element in *N*, such that

(**♣**)
$$\eta(g) \circ \eta(h) = \widehat{\beta(g,h)} \circ \eta(gh).$$

Let $\eta : G \to \operatorname{Aut}(N)$ be a lifting of the outer action $\overline{\eta} \in \operatorname{Hom}(G, \operatorname{Out}(N))$. Then for every $g, h \in G$ the *N*-automorphisms $\eta(g) \circ \eta(h)$ and $\eta(gh)$ differ by an inner automorphism. That is, $\exists \beta(g, h) \in N$, determined up to a central element in *N*, such that

(**♣**)
$$\eta(g) \circ \eta(h) = \widehat{\beta(g,h)} \circ \eta(gh).$$

イロト イヨト イヨト イヨト

Developing $\eta(g(hk)) = \eta((gh)k)$ using (\clubsuit) we have

Let $\eta: G \to \operatorname{Aut}(N)$ be a lifting of the outer action $\overline{\eta} \in \operatorname{Hom}(G, \operatorname{Out}(N))$. Then for every $g, h \in G$ the *N*-automorphisms $\eta(g) \circ \eta(h)$ and $\eta(gh)$ differ by an inner automorphism. That is, $\exists \beta(g, h) \in N$, determined up to a central element in *N*, such that

(**♣**)
$$\eta(g) \circ \eta(h) = \widehat{\beta(g,h)} \circ \eta(gh).$$

Developing $\eta(g(hk)) = \eta((gh)k)$ using (\clubsuit) we have

$$(\diamondsuit) \ \widehat{\beta(g,hk)}^{-1} \circ \eta(\widehat{g)(\beta(h,k))}^{-1} \circ \widehat{\beta(g,h)} \circ \widehat{\beta(gh,k)} = \mathsf{Id}_{N}.$$

This brings us back to the non-abelian coboundary

$$\partial\beta(g,h,k) := \beta(g,hk)^{-1} \cdot \eta(g)(\beta(h,k))^{-1} \cdot \beta(g,h) \cdot \beta(gh,k).$$

イロト イヨト イヨト イヨト

æ,

This brings us back to the non-abelian coboundary

$$\partial\beta(g,h,k) := \beta(g,hk)^{-1} \cdot \eta(g)(\beta(h,k))^{-1} \cdot \beta(g,h) \cdot \beta(gh,k).$$

イロト イヨト イヨト イヨト

크

By (\diamondsuit), one immediately sees that $\partial \beta : G \times G \times G \to \mathcal{Z}(N)$.
$$\partial\beta(g,h,k) := \beta(g,hk)^{-1} \cdot \eta(g)(\beta(h,k))^{-1} \cdot \beta(g,h) \cdot \beta(gh,k).$$

By (\diamondsuit), one immediately sees that $\partial\beta : G \times G \times G \to \mathcal{Z}(N)$. A more careful computation yields that $\partial\beta \in Z^3_{\eta}(G, \mathcal{Z}(N))$, i.e. a 3-cocycle.

Image: A mathematical states and a mathem

$$\partial \beta(g,h,k) := \beta(g,hk)^{-1} \cdot \eta(g)(\beta(h,k))^{-1} \cdot \beta(g,h) \cdot \beta(gh,k).$$

By (\diamond), one immediately sees that $\partial\beta : G \times G \times G \to \mathcal{Z}(N)$. A more careful computation yields that $\partial\beta \in Z^3_{\eta}(G, \mathcal{Z}(N))$, i.e. a 3-cocycle.

As mentioned above, if $\beta' : G \times G \to N$ also satisfies (\clubsuit), then

$$f := \beta' \cdot \beta^{-1} : G \times G \to \mathcal{Z}(N).$$

$$\partial \beta(g,h,k) := \beta(g,hk)^{-1} \cdot \eta(g)(\beta(h,k))^{-1} \cdot \beta(g,h) \cdot \beta(gh,k).$$

By (\diamond), one immediately sees that $\partial\beta : G \times G \times G \to \mathcal{Z}(N)$. A more careful computation yields that $\partial\beta \in Z^3_{\eta}(G, \mathcal{Z}(N))$, i.e. a 3-cocycle.

As mentioned above, if $\beta' : G \times G \to N$ also satisfies (\clubsuit), then

$$f := \beta' \cdot \beta^{-1} : G \times G \to \mathcal{Z}(N).$$

Therefore, $\partial \beta' = \partial \beta \cdot \partial f$.

$$\partial \beta(g,h,k) := \beta(g,hk)^{-1} \cdot \eta(g)(\beta(h,k))^{-1} \cdot \beta(g,h) \cdot \beta(gh,k).$$

By (\diamond), one immediately sees that $\partial\beta : G \times G \times G \to \mathcal{Z}(N)$. A more careful computation yields that $\partial\beta \in Z^3_{\eta}(G, \mathcal{Z}(N))$, i.e. a 3-cocycle.

As mentioned above, if $\beta' : G \times G \to N$ also satisfies (\clubsuit), then

$$f := \beta' \cdot \beta^{-1} : G \times G \to \mathcal{Z}(N).$$

Therefore, $\partial \beta' = \partial \beta \cdot \partial f$. Then η well defines a cohomology class $[\partial \beta] \in H^3_{\eta}(G, \mathcal{Z}(N))$ independently of the choice of β .

$$\partial \beta(g,h,k) := \beta(g,hk)^{-1} \cdot \eta(g)(\beta(h,k))^{-1} \cdot \beta(g,h) \cdot \beta(gh,k).$$

By (\diamond), one immediately sees that $\partial\beta : G \times G \times G \to \mathcal{Z}(N)$. A more careful computation yields that $\partial\beta \in Z^3_{\eta}(G, \mathcal{Z}(N))$, i.e. a 3-cocycle.

As mentioned above, if $\beta' : G \times G \to N$ also satisfies (\clubsuit), then

$$f := \beta' \cdot \beta^{-1} : G \times G \to \mathcal{Z}(N).$$

Therefore, $\partial \beta' = \partial \beta \cdot \partial f$. Then η well defines a cohomology class $[\partial \beta] \in H^3_{\eta}(G, \mathcal{Z}(N))$ independently of the choice of β . Moreover, it turns out that this class is also independent of the lifting η of $\bar{\eta} \in \text{Hom}(G, \text{Out}(N))$.

イロト イヨト イヨト イヨト

크

Note that $\partial \beta(g, h, k) \equiv 1$ iff $\beta : G \times G \to N$ satisfies (\blacklozenge). In this case β is an η -twisting realizing an extension of type $\overline{\eta}$.

臣

Note that $\partial\beta(g, h, k) \equiv 1$ iff $\beta : G \times G \to N$ satisfies (\blacklozenge). In this case β is an η -twisting realizing an extension of type $\overline{\eta}$. Consequently, there exists an η -twisting iff $\partial\beta \in B^3_{\eta}(G, \mathcal{Z}(N))$ (a coboundary).

イロト イヨト イヨト

3

Note that $\partial\beta(g, h, k) \equiv 1$ iff $\beta : G \times G \to N$ satisfies (\blacklozenge). In this case β is an η -twisting realizing an extension of type $\overline{\eta}$. Consequently, there exists an η -twisting iff $\partial\beta \in B^3_{\eta}(G, \mathcal{Z}(N))$ (a coboundary). We summarize

イロト イヨト イヨト

Note that $\partial\beta(g, h, k) \equiv 1$ iff $\beta : G \times G \to N$ satisfies (\blacklozenge). In this case β is an η -twisting realizing an extension of type $\overline{\eta}$. Consequently, there exists an η -twisting iff $\partial\beta \in B^3_{\eta}(G, \mathcal{Z}(N))$ (a coboundary). We summarize

Theorem (Eilenberg-MacLane)

An outer action $\bar{\eta} \in Hom(G, Out(N))$ gives rise to a well-defined cohomology class $[c]_{\bar{\eta}} \in H^3_{\eta}(G, \mathcal{Z}(N))$, which serves as an obstruction to the existence of an extension of type $\bar{\eta}$.

Note that $\partial\beta(g, h, k) \equiv 1$ iff $\beta : G \times G \to N$ satisfies (\blacklozenge). In this case β is an η -twisting realizing an extension of type $\overline{\eta}$. Consequently, there exists an η -twisting iff $\partial\beta \in B^3_{\eta}(G, \mathcal{Z}(N))$ (a coboundary). We summarize

Theorem (Eilenberg-MacLane)

An outer action $\bar{\eta} \in Hom(G, Out(N))$ gives rise to a well-defined cohomology class $[c]_{\bar{\eta}} \in H^3_{\eta}(G, \mathcal{Z}(N))$, which serves as an obstruction to the existence of an extension of type $\bar{\eta}$. If this obstruction vanishes then the type- $\bar{\eta}$ extensions equivalence classes are in 1-1 correspondence with $H^2_{\eta}(G, \mathcal{Z}(N))$.

イロン イヨン イヨン

Note that $\partial\beta(g, h, k) \equiv 1$ iff $\beta : G \times G \to N$ satisfies (\blacklozenge). In this case β is an η -twisting realizing an extension of type $\overline{\eta}$. Consequently, there exists an η -twisting iff $\partial\beta \in B^3_{\eta}(G, \mathcal{Z}(N))$ (a coboundary). We summarize

Theorem (Eilenberg-MacLane)

An outer action $\bar{\eta} \in Hom(G, Out(N))$ gives rise to a well-defined cohomology class $[c]_{\bar{\eta}} \in H^3_{\eta}(G, \mathcal{Z}(N))$, which serves as an obstruction to the existence of an extension of type $\bar{\eta}$. If this obstruction vanishes then the type- $\bar{\eta}$ extensions equivalence classes are in 1-1 correspondence with $H^2_{\eta}(G, \mathcal{Z}(N))$.

イロト イヨト イヨト イヨト 二日

Example: If $gcd(|G|, |\mathcal{Z}(N)|) = 1$ then $H^*_{\eta}(G, \mathcal{Z}(N)) = 1$ no matter what the *G*-module structure of $\mathcal{Z}(N)$ is.

Note that $\partial\beta(g, h, k) \equiv 1$ iff $\beta : G \times G \to N$ satisfies (\blacklozenge). In this case β is an η -twisting realizing an extension of type $\overline{\eta}$. Consequently, there exists an η -twisting iff $\partial\beta \in B^3_{\eta}(G, \mathcal{Z}(N))$ (a coboundary). We summarize

Theorem (Eilenberg-MacLane)

An outer action $\bar{\eta} \in Hom(G, Out(N))$ gives rise to a well-defined cohomology class $[c]_{\bar{\eta}} \in H^3_{\eta}(G, \mathcal{Z}(N))$, which serves as an obstruction to the existence of an extension of type $\bar{\eta}$. If this obstruction vanishes then the type- $\bar{\eta}$ extensions equivalence classes are in 1-1 correspondence with $H^2_{\eta}(G, \mathcal{Z}(N))$.

Example: If gcd(|G|, |Z(N)|) = 1 then $H^*_{\eta}(G, Z(N)) = 1$ no matter what the *G*-module structure of Z(N) is. Thus, for every $\bar{\eta} \in Hom(G, Out(N))$ there is a unique extension of type $\bar{\eta}$.

▶ ★ 臣 ▶ ★ 臣 ▶ 二 臣

extensions of groups graded algebras

graded algebras a 7-term sequence ...and back

・ロ・・(部・・注・・注・) 注

The theory of group graded algebras is parallel to the above setup.

・ロト ・日ト ・ヨト ・ヨト

æ

The theory of group graded algebras is parallel to the above setup. Let G be a group and let k be a commutative (associative and unital) ring.

臣

The theory of group graded algebras is parallel to the above setup. Let G be a group and let k be a commutative (associative and unital) ring.

A k-algebra A is G-graded if it admits an additive decomposition

$$(\heartsuit) \quad A = \oplus_{g \in G} A_g$$

such that

$$A_g \cdot A_h \subseteq A_{gh}, \ \forall g, h \in G.$$

The theory of group graded algebras is parallel to the above setup. Let G be a group and let k be a commutative (associative and unital) ring.

A k-algebra A is G-graded if it admits an additive decomposition

$$(\heartsuit) \quad A = \oplus_{g \in G} A_g$$

such that

$$A_g \cdot A_h \subseteq A_{gh}, \quad \forall g, h \in G.$$

This multiplicative condition yields that the trivial homogeneous component A_e is in particular a subalgebra of A called the **base** algebra.

The theory of group graded algebras is parallel to the above setup. Let G be a group and let k be a commutative (associative and unital) ring.

A k-algebra A is G-graded if it admits an additive decomposition

$$(\heartsuit) \quad A = \oplus_{g \in G} A_g$$

such that

$$A_g \cdot A_h \subseteq A_{gh}, \quad \forall g, h \in G.$$

This multiplicative condition yields that the trivial homogeneous component A_e is in particular a subalgebra of A called the **base** algebra.

Moreover, every homogeneous component A_g is an A_e -bimodule and (\heartsuit) describes a decomposition of A as a direct sum of A_e -bimodules.

Crossed products

A *G*-graded *k*-algebra (\heartsuit) is a **crossed product** if there exists a unit $u_g \in (A_g)^*$ for every $g \in G$.

イロン イヨン イヨン ・

臣

Crossed products

A *G*-graded *k*-algebra (\heartsuit) is a **crossed product** if there exists a unit $u_g \in (A_g)^*$ for every $g \in G$. A crossed product is usually written as $A_e * G$.

イロト イヨト イヨト

3

Crossed products

A *G*-graded *k*-algebra (\heartsuit) is a **crossed product** if there exists a unit $u_g \in (A_g)^*$ for every $g \in G$. A crossed product is usually written as $A_e * G$. Then

$$A_e * G := \bigoplus_{g \in G} A_e \cdot u_g = \bigoplus_{g \in G} u_g \cdot A_e.$$

臣

Crossed products

A *G*-graded *k*-algebra (\heartsuit) is a **crossed product** if there exists a unit $u_g \in (A_g)^*$ for every $g \in G$. A crossed product is usually written as $A_e * G$. Then

$$A_e * G := \bigoplus_{g \in G} A_e \cdot u_g = \bigoplus_{g \in G} u_g \cdot A_e.$$

臣

Examples

(a) For any k-algebra K, the group algebra KG is an immediate example for a crossed product.

イロト イヨト イヨト イヨト

臣

Examples

(a) For any k-algebra K, the group algebra KG is an immediate example for a crossed product.

In particular, the group algebra with respect to the group of integers $G = \mathbb{Z}$ can be identified with the Laurent polynomial algebra $K[X^{\pm 1}]$.

イロト イヨト イヨト イヨト

æ

Examples

(a) For any k-algebra K, the group algebra KG is an immediate example for a crossed product.

In particular, the group algebra with respect to the group of integers $G = \mathbb{Z}$ can be identified with the Laurent polynomial algebra $K[X^{\pm 1}]$.

(b) Adding an action $\phi \in \text{Hom}(\mathbb{Z}, \text{Aut}_k(\mathcal{K}))$ yields the corresponding **skew Laurent polynomial algebra** $\mathcal{K}[X^{\pm 1}; \phi]$, which is a crossed product as well.

Examples

(a) For any k-algebra K, the group algebra KG is an immediate example for a crossed product.

In particular, the group algebra with respect to the group of integers $G = \mathbb{Z}$ can be identified with the Laurent polynomial algebra $K[X^{\pm 1}]$.

(b) Adding an action $\phi \in \text{Hom}(\mathbb{Z}, \text{Aut}_k(K))$ yields the corresponding skew Laurent polynomial algebra $K[X^{\pm 1}; \phi]$, which is a crossed product as well.

Note that the \mathbb{Z} -graded algebras K[X] and, more generally, $K[X; \phi]$ are not crossed products.

Examples

(a) For any k-algebra K, the group algebra KG is an immediate example for a crossed product.

In particular, the group algebra with respect to the group of integers $G = \mathbb{Z}$ can be identified with the Laurent polynomial algebra $K[X^{\pm 1}]$.

(b) Adding an action $\phi \in \text{Hom}(\mathbb{Z}, \text{Aut}_k(\mathcal{K}))$ yields the corresponding **skew Laurent polynomial algebra** $\mathcal{K}[X^{\pm 1}; \phi]$, which is a crossed product as well.

Note that the \mathbb{Z} -graded algebras K[X] and, more generally, $K[X; \phi]$ are not crossed products.

(c) If k is a field, then every Brauer similarity class in Br(k) can be represented by a **classical crossed product** K * G, where K is a Galois field extension of k, and G = Gal[K : k].

Let $A_e * G$ be a crossed product.

ヘロア 人間 アメヨア 小田 アー

æ,

Let $A_e * G$ be a crossed product. Conjugation by u_g

$$x\mapsto \widehat{u_g}(x):=u_g\cdot x\cdot u_g^{-1}$$

イロン イヨン イヨン ・

臣

is a k-automorphism of the base algebra A_e .

Let $A_e * G$ be a crossed product. Conjugation by u_g

$$x\mapsto \widehat{u_g}(x):=u_g\cdot x\cdot u_g^{-1}$$

< □ > < □ > < □

is a *k*-automorphism of the base algebra A_e . Note that the invertible elements in A_g are $\{\lambda \cdot u_g\}_{\lambda \in A_e^*}$.

Let $A_e * G$ be a crossed product. Conjugation by u_g

$$x\mapsto \widehat{u_g}(x):=u_g\cdot x\cdot u_g^{-1}$$

is a *k*-automorphism of the base algebra A_e . Note that the invertible elements in A_g are $\{\lambda \cdot u_g\}_{\lambda \in A_e^*}$. If A_e is commutative, then this automorphism does not depend on the choice of u_g as above, and the rule

$$\Phi: egin{array}{ccc} G &
ightarrow & {
m Aut}_k(A_e) \ g & \mapsto & \widehat{u_g} \end{array}$$

イロト イヨト イヨト イヨト

is a group homomorphism, that is a G-action on A_e .

When A_e is not necessarily commutative, then exactly as in the group setting, distinct choices of invertible elements result in A_e -automorphisms which differ by inner A_e -automorphisms.

<ロト < 回 > < 三 >

When A_e is not necessarily commutative, then exactly as in the group setting, distinct choices of invertible elements result in A_e -automorphisms which differ by inner A_e -automorphisms. There is a well-defined outer action (a **collective character**)

$$\Phi: \begin{array}{rcl} G & \to & Out_k(A_e) = \operatorname{Aut}_k(A_e) / \operatorname{Inn}(A_e) \\ g & \mapsto & \widehat{u_g} \cdot \operatorname{Inn}(A_e) \end{array}$$

In order to describe the multiplication in $A_e * G$ it is left to determine the product $u_g \cdot u_h$ for every $g, h \in G$.

イロン イヨン イヨン ・

臣

In order to describe the multiplication in $A_e * G$ it is left to determine the product $u_g \cdot u_h$ for every $g, h \in G$. Since the outcome lies in $A_{gh}^* = A_e^* \cdot u_{gh}$, there is a unique $\alpha = \alpha(g, h) \in A_e^*$ such that

$$u_g \cdot u_h = \alpha(g, h) \cdot u_{gh}.$$

臣

In order to describe the multiplication in $A_e * G$ it is left to determine the product $u_g \cdot u_h$ for every $g, h \in G$. Since the outcome lies in $A_{gh}^* = A_e^* \cdot u_{gh}$, there is a unique $\alpha = \alpha(g, h) \in A_e^*$ such that

$$u_{g} \cdot u_{h} = \alpha(g, h) \cdot u_{gh}.$$

Develop the associativity in

$$(u_{g_1} \cdot u_{g_2}) \cdot u_{g_3} = u_{g_1} \cdot (u_{g_2} \cdot u_{g_3})$$

・ロト ・回ト ・ヨト ・ヨト

æ

to obtain (\blacklozenge) $\partial \alpha \equiv 1$,
In order to describe the multiplication in $A_e * G$ it is left to determine the product $u_g \cdot u_h$ for every $g, h \in G$. Since the outcome lies in $A_{gh}^* = A_e^* \cdot u_{gh}$, there is a unique $\alpha = \alpha(g, h) \in A_e^*$ such that

$$u_{g} \cdot u_{h} = \alpha(g, h) \cdot u_{gh}.$$

Develop the associativity in

$$(u_{g_1} \cdot u_{g_2}) \cdot u_{g_3} = u_{g_1} \cdot (u_{g_2} \cdot u_{g_3})$$

to obtain (\blacklozenge) $\partial \alpha \equiv 1$, where

 $\partial \alpha(g_1g_2,g_3) := \alpha(g_1,g_2g_3)^{-1} \cdot \eta(g_1)(\alpha(g_2,g_3))^{-1} \cdot \alpha(g_1,g_2) \cdot \alpha(g_1g_2,g_3).$

イロト イヨト イヨト イヨト 二日

In order to describe the multiplication in $A_e * G$ it is left to determine the product $u_g \cdot u_h$ for every $g, h \in G$. Since the outcome lies in $A_{gh}^* = A_e^* \cdot u_{gh}$, there is a unique $\alpha = \alpha(g, h) \in A_e^*$ such that

$$u_{g} \cdot u_{h} = \alpha(g, h) \cdot u_{gh}.$$

Develop the associativity in

$$(u_{g_1} \cdot u_{g_2}) \cdot u_{g_3} = u_{g_1} \cdot (u_{g_2} \cdot u_{g_3})$$

to obtain (\blacklozenge) $\partial \alpha \equiv 1$, where

 $\partial \alpha(g_1g_2,g_3) := \alpha(g_1,g_2g_3)^{-1} \cdot \eta(g_1)(\alpha(g_2,g_3))^{-1} \cdot \alpha(g_1,g_2) \cdot \alpha(g_1g_2,g_3).$

As before, $\alpha : G \times G \rightarrow A_e^*$ satisfying (\blacklozenge) is termed an η -twisting.

In order to describe the multiplication in $A_e * G$ it is left to determine the product $u_g \cdot u_h$ for every $g, h \in G$. Since the outcome lies in $A_{gh}^* = A_e^* \cdot u_{gh}$, there is a unique $\alpha = \alpha(g, h) \in A_e^*$ such that

$$u_{g} \cdot u_{h} = \alpha(g, h) \cdot u_{gh}.$$

Develop the associativity in

$$(u_{g_1} \cdot u_{g_2}) \cdot u_{g_3} = u_{g_1} \cdot (u_{g_2} \cdot u_{g_3})$$

to obtain (\blacklozenge) $\partial \alpha \equiv 1$, where

 $\partial \alpha(g_1g_2,g_3) := \alpha(g_1,g_2g_3)^{-1} \cdot \eta(g_1)(\alpha(g_2,g_3))^{-1} \cdot \alpha(g_1,g_2) \cdot \alpha(g_1g_2,g_3).$

As before, $\alpha : G \times G \rightarrow A_e^*$ satisfying (\blacklozenge) is termed an η -twisting.

A_e commutative

When A_e is commutative, (\blacklozenge) is the 2-cocycle condition.

イロン イヨン イヨン ・

臣

A_e commutative

When A_e is commutative, (\blacklozenge) is the 2-cocycle condition. Different choices of invertible homogeneous elements yield 2-cocycles which are cohomologous.

A_e commutative

When A_e is commutative, (\blacklozenge) is the 2-cocycle condition. Different choices of invertible homogeneous elements yield 2-cocycles which are cohomologous. Thus, the crossed products $A_e * G$ of type Φ are identified with $H^2_{\Phi}(G, A^*_e)$.

A_e commutative

When A_e is commutative, (\bigstar) is the 2-cocycle condition. Different choices of invertible homogeneous elements yield 2-cocycles which are cohomologous. Thus, the crossed products $A_e * G$ of type Φ are identified with $H^2_{\Phi}(G, A^*_e)$. Distinguishing the trivial 2-cocycle $\alpha \equiv 1$, or more precisely its cohomology class, we obtain the **skew group algebra** as an analogue of the semi-direct product.

A_e commutative

When A_e is commutative, (\bigstar) is the 2-cocycle condition. Different choices of invertible homogeneous elements yield 2-cocycles which are cohomologous. Thus, the crossed products $A_e * G$ of type Φ are identified with $H^2_{\Phi}(G, A^*_e)$. Distinguishing the trivial 2-cocycle $\alpha \equiv 1$, or more precisely its cohomology class, we obtain the **skew group algebra** as an analogue of the semi-direct product.

A skew group algebra under the trivial action is the group algebra.

When the collective character $\Phi : G \to Out(A_e)$ has no lifting to an action, there is no meaning of a skew group algebra of this type.

When the collective character $\Phi : G \to \text{Out}(A_e)$ has no lifting to an action, there is no meaning of a skew group algebra of this type. Again, a crossed product of type Φ might not exist at all.

Image: A matrix and a matrix

When the collective character $\Phi : G \to \text{Out}(A_e)$ has no lifting to an action, there is no meaning of a skew group algebra of this type. Again, a crossed product of type Φ might not exist at all. The outer action Φ restricts to a *G*-action Φ_0 on the center $\mathcal{Z}(A_e)$.

$$\Phi \rightsquigarrow [c_{\Phi}] \in H^3_{\Phi_0}(G, \mathcal{Z}(A_e^*)).$$

$$\Phi \rightsquigarrow [c_{\Phi}] \in H^3_{\Phi_0}(G, \mathcal{Z}(A_e^*)).$$

This is an obstruction to realizing a crossed product of type Φ .

$$\Phi \rightsquigarrow [c_{\Phi}] \in H^3_{\Phi_0}(G, \mathcal{Z}(A_e^*)).$$

This is an obstruction to realizing a crossed product of type Φ . If Φ is realizable, that is $[c_{\Phi}] = 1$, then the graded classes of type- Φ crossed products are acted on by $H^2_{\Phi_0}(G, \mathcal{Z}(A_e^*))$ freely and transitively.

< ロ > < 同 > < 三 > < 三 >

$$\Phi \rightsquigarrow [c_{\Phi}] \in H^3_{\Phi_0}(G, \mathcal{Z}(A_e^*)).$$

This is an obstruction to realizing a crossed product of type Φ . If Φ is realizable, that is $[c_{\Phi}] = 1$, then the graded classes of type- Φ crossed products are acted on by $H^2_{\Phi_0}(G, \mathcal{Z}(A_e^*))$ freely and transitively.

イロト イヨト イヨト イヨト

Then these sets can be (non-canonically) identified.

Strongly graded algebras

Crossed products are instances of strongly graded algebras.

イロト イヨト イヨト イヨト

臣

Strongly graded algebras

Crossed products are instances of strongly graded algebras. A grading (\heartsuit) is strong if

$$A_g \cdot A_h = A_{gh}, \ \forall g, h \in G.$$

イロト イヨト イヨト イヨト

크

Strongly graded algebras

Crossed products are instances of strongly graded algebras. A grading (\heartsuit) is strong if

$$A_g \cdot A_h = A_{gh}, \ \forall g, h \in G.$$

イロト イヨト イヨト イヨト

크

Let (\heartsuit) be a strongly *G*-graded *k*-algebra.

Strongly graded algebras

Crossed products are instances of strongly graded algebras. A grading (\heartsuit) is strong if

$$A_g \cdot A_h = A_{gh}, \quad \forall g, h \in G.$$

Let (\heartsuit) be a strongly *G*-graded *k*-algebra.

Then any homogeneous component A_g , or rather its isomorphism class $[A_g]$, is **invertible** as an A_e -bimodule since

$$[A_g \otimes_{A_e} A_{g^{-1}}] = [A_{g^{-1}} \otimes_{A_e} A_g] = [A_e].$$

Strongly graded algebras

Crossed products are instances of strongly graded algebras. A grading (\heartsuit) is strong if

$$A_g \cdot A_h = A_{gh}, \quad \forall g, h \in G.$$

Let (\heartsuit) be a strongly *G*-graded *k*-algebra.

Then any homogeneous component A_g , or rather its isomorphism class $[A_g]$, is **invertible** as an A_e -bimodule since

$$[A_g \otimes_{A_e} A_{g^{-1}}] = [A_{g^{-1}} \otimes_{A_e} A_g] = [A_e].$$

イロト イヨト イヨト イヨト

In other words, $[A_g] \in \operatorname{Pic}_k(A_e)$ for every $g \in G$.

Strongly graded algebras

Crossed products are instances of strongly graded algebras. A grading (\heartsuit) is strong if

$$A_g \cdot A_h = A_{gh}, \quad \forall g, h \in G.$$

Let (\heartsuit) be a strongly *G*-graded *k*-algebra.

Then any homogeneous component A_g , or rather its isomorphism class $[A_g]$, is **invertible** as an A_e -bimodule since

$$[A_g \otimes_{A_e} A_{g^{-1}}] = [A_{g^{-1}} \otimes_{A_e} A_g] = [A_e].$$

In other words, $[A_g] \in \operatorname{Pic}_k(A_e)$ for every $g \in G$. Then (\heartsuit) gives rise to a Generalized Collective Character [GCC]

$$\Phi: G \to \operatorname{Pic}_k(A_e).$$

Strongly graded algebras

Crossed products are instances of strongly graded algebras. A grading (\heartsuit) is strong if

$$A_g \cdot A_h = A_{gh}, \quad \forall g, h \in G.$$

Let (\heartsuit) be a strongly *G*-graded *k*-algebra.

Then any homogeneous component A_g , or rather its isomorphism class $[A_g]$, is **invertible** as an A_e -bimodule since

$$[A_g \otimes_{A_e} A_{g^{-1}}] = [A_{g^{-1}} \otimes_{A_e} A_g] = [A_e].$$

In other words, $[A_g] \in \operatorname{Pic}_k(A_e)$ for every $g \in G$. Then (\heartsuit) gives rise to a **Generalized Collective Character** [GCC]

$$\Phi: G \to \operatorname{Pic}_k(A_e).$$

These indeed generalize collective characters since

$$\operatorname{Out}_k(A_e) < \operatorname{Pic}_k(A_e).$$

Another generalization is a morphism $\operatorname{Pic}_k(R) \xrightarrow{h} \operatorname{Aut}_k(\mathcal{Z}(R))$ (which splits if the *k*-algebra *R* is commutative), associating to any GCC $\Phi : G \to \operatorname{Pic}_k(A_e)$, a *G*-module structure on the abelian group $\mathcal{Z}(A_e^*)$, and, in turn, an obstruction class

$$\Phi \rightsquigarrow [c_{\Phi}] \in H^3_{\Phi_0}(G, \mathcal{Z}(A_e^*)).$$

Another generalization is a morphism $\operatorname{Pic}_k(R) \xrightarrow{h} \operatorname{Aut}_k(\mathcal{Z}(R))$ (which splits if the *k*-algebra *R* is commutative), associating to any GCC $\Phi : G \to \operatorname{Pic}_k(A_e)$, a *G*-module structure on the abelian group $\mathcal{Z}(A_e^*)$, and, in turn, an obstruction class

$$\Phi \rightsquigarrow [c_{\Phi}] \in H^3_{\Phi_0}(G, \mathcal{Z}(A_e^*)).$$

If Φ is unobstructed, then the strongly graded algebras of type Φ (up to equivalence) are similarly identified with $H^2_{\Phi_0}(G, \mathcal{Z}(A_e^*))$.

< ロ > < 同 > < 三 > < 三 >

Let the group G act on be a commutative k-algebra K via $\Phi_0: G \to \operatorname{Aut}_k(K)$.

イロト イヨト イヨト イヨト

3

Let the group G act on be a commutative k-algebra K via $\Phi_0: G \to \operatorname{Aut}_k(K)$. Let (a) $\operatorname{Cliff}_k(\Phi_0)$ be the set of strongly graded classes of type Φ_0 over the base algebra K, and

Let the group G act on be a commutative k-algebra K via $\Phi_0: G \to \operatorname{Aut}_k(K)$. Let (a) $\operatorname{Cliff}_k(\Phi_0)$ be the set of strongly graded classes of type Φ_0 over the base algebra K, and (b) $\mathcal{C}_k(\Phi_0)$ be the set of equivariance classes of GCC's $\Phi: G \to \operatorname{Pic}_k(K)$ which are mapped to Φ_0 under h^* .

Let the group G act on be a commutative k-algebra K via $\Phi_0: G \to \operatorname{Aut}_k(K)$. Let (a) $\operatorname{Cliff}_k(\Phi_0)$ be the set of strongly graded classes of type Φ_0 over the base algebra K, and (b) $\mathcal{C}_k(\Phi_0)$ be the set of equivariance classes of GCC's $\Phi: G \to \operatorname{Pic}_k(K)$ which are mapped to Φ_0 under h^* . Both $\operatorname{Cliff}_k(\Phi_0)$ and $\mathcal{C}_k(\Phi_0)$ are endowed with abelian group structures under the corresponding **skew products**.

Let the group G act on be a commutative k-algebra K via $\Phi_0: G \to \operatorname{Aut}_k(K)$. Let (a) Cliff_k(Φ_0) be the set of strongly graded classes of type Φ_0 over the base algebra K, and (b) $\mathcal{C}_k(\Phi_0)$ be the set of equivariance classes of GCC's $\Phi: G \to \operatorname{Pic}_k(K)$ which are mapped to Φ_0 under h^* . Both $\operatorname{Cliff}_k(\Phi_0)$ and $\mathcal{C}_k(\Phi_0)$ are endowed with abelian group structures under the corresponding skew products. Then the above discussion is illustrated in the following exact sequence of abelian groups

Let the group G act on be a commutative k-algebra K via $\Phi_0: G \to \operatorname{Aut}_k(K)$. Let (a) Cliff_k(Φ_0) be the set of strongly graded classes of type Φ_0 over the base algebra K, and (b) $C_k(\Phi_0)$ be the set of equivariance classes of GCC's $\Phi: G \to \operatorname{Pic}_k(K)$ which are mapped to Φ_0 under h^* . Both $\operatorname{Cliff}_k(\Phi_0)$ and $\mathcal{C}_k(\Phi_0)$ are endowed with abelian group structures under the corresponding skew products. Then the above discussion is illustrated in the following exact sequence of abelian groups

$$(*) \hspace{0.2cm} 1 \rightarrow H^2_{\Phi_0}(G, K^*) \rightarrow \textit{Cliff}_k(\Phi_0) \rightarrow \mathcal{C}_k(\Phi_0) \rightarrow H^3_{\Phi_0}(G, K^*).$$

Next, Pic(K) acts on both terms $Cliff_k(\Phi_0)$ [Haefner - del Río] and $C_k(\Phi_0)$ respecting both skew products, in a way such that

 $(**) \hspace{0.1cm} H^2_{\Phi_0}(G,K^*) \rightarrow \mathsf{Cliff}_k(\Phi_0)/\mathsf{Pic}(K) \rightarrow \mathcal{C}_k(\Phi_0)/\mathsf{Pic}(K) \rightarrow H^3_{\Phi_0}(G,K^*)$

イロト イポト イヨト イヨト 二日

remains exact.

Next, Pic(K) acts on both terms $Cliff_k(\Phi_0)$ [Haefner - del Río] and $C_k(\Phi_0)$ respecting both skew products, in a way such that

 $(**) \hspace{0.1cm} H^{2}_{\Phi_{0}}(G, K^{*}) \rightarrow \mathsf{Cliff}_{k}(\Phi_{0})/\mathsf{Pic}(K) \rightarrow \mathcal{C}_{k}(\Phi_{0})/\mathsf{Pic}(K) \rightarrow H^{3}_{\Phi_{0}}(G, K^{*})$

イロト イヨト イヨト イヨト 一日

remains exact.

However, the leftmost morphism in (**) is no more injective.

Next, Pic(K) acts on both terms $Cliff_k(\Phi_0)$ [Haefner - del Río] and $C_k(\Phi_0)$ respecting both skew products, in a way such that

$$(**) \hspace{0.1cm} H^{2}_{\Phi_{0}}(G,K^{*}) \rightarrow \mathsf{Cliff}_{k}(\Phi_{0})/\mathsf{Pic}(K) \rightarrow \mathcal{C}_{k}(\Phi_{0})/\mathsf{Pic}(K) \rightarrow H^{3}_{\Phi_{0}}(G,K^{*})$$

remains exact.

However, the leftmost morphism in (**) is no more injective.

The sequence can be completed as follows

Theorem (A.Antony-Y.G.)

Let K be a commutative k-algebra. Then there is a 7-term exact sequence of abelian groups

$$1 \rightarrow H^{1}_{\phi_{0}}(G, K^{*}) \rightarrow Ext(\phi_{0}, Pic(K)) \rightarrow Pic(K)^{\phi_{0}} \rightarrow H^{2}_{\phi_{0}}(G, K^{*}) \\ \rightarrow Cliff_{k}(\phi_{0})/Pic(K) \rightarrow C_{k}(\phi_{0})/Pic(K) \rightarrow H^{3}_{\phi_{0}}(G, K^{*}).$$

This sequence boils down to the well-known 7-term sequence due to Chase-Harrison-Rosenberg (1965) for Galois extensions of commutative rings $k \subseteq K$ with Galois group G.

This sequence boils down to the well-known 7-term sequence due to Chase-Harrison-Rosenberg (1965) for Galois extensions of commutative rings $k \subseteq K$ with Galois group G.

$$1 \quad \rightarrow H^1_{\phi_0}(G, K^*) \rightarrow \operatorname{Pic}(k) \rightarrow \operatorname{Pic}(K)^{\phi_0} \rightarrow H^2_{\phi_0}(G, K^*) \\ \rightarrow \operatorname{Br}(K/k) \rightarrow H^1_{\phi_0}(G, \operatorname{Pic}(K)) \rightarrow H^3_{\phi_0}(G, K^*).$$

This sequence boils down to the well-known 7-term sequence due to Chase-Harrison-Rosenberg (1965) for Galois extensions of commutative rings $k \subseteq K$ with Galois group G.

$$1 \rightarrow H^{1}_{\phi_{0}}(G, K^{*}) \rightarrow \operatorname{Pic}(k) \rightarrow \operatorname{Pic}(K)^{\phi_{0}} \rightarrow H^{2}_{\phi_{0}}(G, K^{*}) \\ \rightarrow \operatorname{Br}(K/k) \rightarrow H^{1}_{\phi_{0}}(G, \operatorname{Pic}(K)) \rightarrow H^{3}_{\phi_{0}}(G, K^{*}).$$

イロト イポト イヨト イヨト

If $k \subseteq K$ ia a Galois extension of *fields* then both Pic(k) and Pic(K) are trivial, hence
This sequence boils down to the well-known 7-term sequence due to Chase-Harrison-Rosenberg (1965) for Galois extensions of commutative rings $k \subseteq K$ with Galois group G.

$$1 \rightarrow H^{1}_{\phi_{0}}(G, K^{*}) \rightarrow Pic(k) \rightarrow Pic(K)^{\phi_{0}} \rightarrow H^{2}_{\phi_{0}}(G, K^{*}) \\ \rightarrow Br(K/k) \rightarrow H^{1}_{\phi_{0}}(G, Pic(K)) \rightarrow H^{3}_{\phi_{0}}(G, K^{*}).$$

If $k \subseteq K$ ia a Galois extension of *fields* then both Pic(k) and Pic(K) are trivial, hence

• Br $(K/k) \cong H^2_{\phi_0}(G, K^*)$ (any k-central simple algebra split by K is Brauer similar to a classical crossed product),

This sequence boils down to the well-known 7-term sequence due to Chase-Harrison-Rosenberg (1965) for Galois extensions of commutative rings $k \subseteq K$ with Galois group G.

$$1 \rightarrow H^{1}_{\phi_{0}}(G, K^{*}) \rightarrow \operatorname{Pic}(k) \rightarrow \operatorname{Pic}(K)^{\phi_{0}} \rightarrow H^{2}_{\phi_{0}}(G, K^{*}) \\ \rightarrow \operatorname{Br}(K/k) \rightarrow H^{1}_{\phi_{0}}(G, \operatorname{Pic}(K)) \rightarrow H^{3}_{\phi_{0}}(G, K^{*}).$$

If $k \subseteq K$ ia a Galois extension of *fields* then both Pic(k) and Pic(K) are trivial, hence

• Br $(K/k) \cong H^2_{\phi_0}(G, K^*)$ (any k-central simple algebra split by K is Brauer similar to a classical crossed product), and

イロト イヨト イヨト

•
$$H^1_{\phi_0}(G, K^*) = 1$$
 (Hilbert's Theorem 90).

This sequence boils down to the well-known 7-term sequence due to Chase-Harrison-Rosenberg (1965) for Galois extensions of commutative rings $k \subseteq K$ with Galois group G.

$$1 \quad \rightarrow H^{1}_{\phi_{0}}(G, K^{*}) \rightarrow \operatorname{Pic}(k) \rightarrow \operatorname{Pic}(K)^{\phi_{0}} \rightarrow H^{2}_{\phi_{0}}(G, K^{*}) \\ \rightarrow \operatorname{Br}(K/k) \rightarrow H^{1}_{\phi_{0}}(G, \operatorname{Pic}(K)) \rightarrow H^{3}_{\phi_{0}}(G, K^{*}).$$

If $k \subseteq K$ is a Galois extension of *fields* then both Pic(k) and Pic(K) are trivial, hence

• $\operatorname{Br}(K/k) \cong H^2_{\phi_0}(G, K^*)$ (any k-central simple algebra split by K is Brauer similar to a classical crossed product), and

•
$$H^{1}_{\phi_{0}}(G, K^{*}) = 1$$
 (Hilbert's Theorem 90).

Other generalizations were suggested by Kanzaki, Miyashita, El Kaoutit and J. Gómez-Torrecillas, Dokuchaev et. al.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

We see a "dictionary" between the theories

ヘロア 人間 アメヨア 小田 アー

Ð,

We see a "dictionary" between the theories

direct products semi-direct products central extensions group extensions

- $\leftrightarrow \ \ \mathsf{group} \ \mathsf{algebras}$
- $\leftrightarrow \quad \mathsf{skew} \ \mathsf{group} \ \mathsf{algebras}$
- $\leftrightarrow \ \ {\rm twisted \ group \ algebras \ over \ comm. \ rings}$

 $\leftrightarrow \ \ \, \text{crossed products.}$

We see a "dictionary" between the theories

Question. What is the l.h.s. analogue of (strongly) graded algebras?

We see a "dictionary" between the theories

direct products	\leftrightarrow	group algebras
semi-direct products	\leftrightarrow	skew group algebras
central extensions	\leftrightarrow	twisted group algebras over comm. rings
group extensions	\leftrightarrow	crossed products.

Question. What is the l.h.s. analogue of (strongly) graded algebras?

For that we need to relax the invertibility demand as in the r.h.s., staying in the world of semigroups.

臣

We see a "dictionary" between the theories

direct products	\leftrightarrow	group algebras
semi-direct products	\leftrightarrow	skew group algebras
central extensions	\leftrightarrow	twisted group algebras over comm. rings
group extensions	\leftrightarrow	crossed products.

Question. What is the l.h.s. analogue of (strongly) graded algebras?

For that we need to relax the invertibility demand as in the r.h.s., staying in the world of semigroups.

臣

Let R < S be semigroups, and let G be a monoid with identity e.

ヘロア 人間 アメヨア 小田 アー

æ,

Let R < S be semigroups, and let G be a monoid with identity e. We say that S is an **extension of** G by R if it admits a decomposition

$$(\blacklozenge) \ S = \sqcup_{g \in G} S_g$$

as a disjoint union of subsets indexed by the elements of G (cosets) such that $S_e \cong R$, and

$$S_g \cdot S_h := \{x_g \cdot x_h | x_g \in S_g, x_h \in S_h\} \subseteq S_{g \cdot h}, \ \forall g, h \in G.$$

イロト イポト イヨト イヨト

Let R < S be semigroups, and let G be a monoid with identity e. We say that S is an **extension of** G by R if it admits a decomposition

$$(\blacklozenge) \ S = \sqcup_{g \in G} S_g$$

as a disjoint union of subsets indexed by the elements of G (cosets) such that $S_e \cong R$, and

$$S_g \cdot S_h := \{x_g \cdot x_h | x_g \in S_g, x_h \in S_h\} \subseteq S_{g \cdot h}, \ \forall g, h \in G.$$

It turns out that the addition and so the direct sum in (\heartsuit) are somehow redundant.

Let R < S be semigroups, and let G be a monoid with identity e. We say that S is an **extension of** G by R if it admits a decomposition

$$(\blacklozenge) \ S = \sqcup_{g \in G} S_g$$

as a disjoint union of subsets indexed by the elements of G (cosets) such that $S_e \cong R$, and

$$S_g \cdot S_h := \{x_g \cdot x_h | x_g \in S_g, x_h \in S_h\} \subseteq S_{g \cdot h}, \ \forall g, h \in G.$$

It turns out that the addition and so the direct sum in (\heartsuit) are somehow redundant.

Observation (A.Antony-Y.G.)

One operation is needed to develop the theory, including Picard groups of invertible bisets, and a corresponding 7-term sequence for semigroup extensions.

Thanks for your attention.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

Ð,