Linear degenerations of Schubert varieties Via quiver Grassmannians

Giulia lezzi

Università degli Studi di Roma Tor Vergata/RWTH Aachen University

Groups and their actions

Levico Terme, June 2024

Fix $G = GL_{max}(\xi)$, B = upper - triangular matrices in G(Borel subgroup)

Fix $G = GL_{n+1}(\mathcal{L}), B = upper - triangular matrices in G$ (Borel subgroup) $~> Fl_{n+1} := G/B Complete glag variety$

Fix $G = GL_{n+1}(\xi)$, B = upper - triangular matrices in G(Borel subgroup) $~> Fl_{n+1} := G/B Complete glag variety$ Flmty = gVocV1c... cVmc4" | dime Vi=is

Fix Q=GLm+1 (\$), B=upper-triangular matrices in G (Borel subgroup) ~> Flm+1:=G/B Complete glag variety Flmt = VocVic... cVmc f^{mt} dime Vi = is · Classe change) -> We consider instead the action of B on Flat1

The action of B on Flm+1 yields finitely many orbits, or alls, indexed by the elements W of Sm+1.

These alls Cw on isomorphic to alline spaces and Jorm a stratification of Flmm.

The action of B on Flm+1 yields finitely many orbits, or alls, indexed by the elements W of Sm+1.

These alls Cw on isomorphic to alline spaces and Jorm a stratification of Flmm.

Def: Schubert vaniety in Flmm Xw:= Cw (Zaniski closure)

The action of B on Flm+1 yields finitely many orbits, or alls, indexed by the elements W of Sm+1. These alls Cw on isomorphic to alline spaces and Jorm a stratification of Flmm. Def: Schubert vaniety in Flmm $X_{W} := C_{W}$ (Zaniski closure) • $X_W \equiv \bigcup_{\substack{v \in S_{m+1} \\ v \in W}} C_v$, where " \leq " is Bruhat order in S_{m+1} E321] E231] E312] [213] E132] EX: Bruhat order in Sz: T 123]

Quiver Grossmannians

Quiver Grossmannians

ound fix dimension vector $e = (1, 2, ..., n) \in \mathbb{Z}_{70}^{\infty}$.

Quiver Grossmannians

Quin Grossmannians

Linear degenerations of flag varieties (CERULLI RELLI, FANG, FEIGIN, FOURIER, REINEKE 2016)

 $\frac{1}{\sqrt{m+1}} \frac{1}{\sqrt{m+1}} \frac{1$

Linear degenerations of flag varieties (CERULLI RELLI, FANG, FEIGIN, FOURIER, REINEKE 2016)

 $\frac{1}{\sqrt{m+1}} = \frac{1}{\sqrt{m+1}} = \frac{1}$ $\rightarrow Fl_{m+1}^{0*} := lit_{e}(\mathcal{M}^{0*})$ where $Q_{Y_{e}}(M^{(*)}) = \{(V_{i})_{i=1}^{n} | dim V_{i} = i, \{i(V_{i}) \in V_{i+1}\}.$

Linear degenerations of flag vonieties (CERULII RELLI, FANG, FEIGIN, FOURTER, REINEKE 2016)

Linear degenerations of flag vonieties (CERVILI RELLI, FANG, FEIGIN, FOURTER, REINEKE 2016)

The orbits Our and the relations armong their closures are described by <u>RANM TUPLES</u>: $M = (l_{1,-}, l_{m-1}), \quad X^{M} := (V_{ij}^{M})_{i < j}$ where $V_{ij}^{M} := Vank(l_{j-1}^{M} ... ol_{j}^{M})$

The orbits On and the relations among their closures are described by <u>RANM TUPLES</u>: $i \begin{cases} \mathcal{M} = (l_1, l_{m-1}), \quad \Upsilon^{\mathcal{M}} := (\Upsilon^{\mathcal{M}}_{i,j})_{i < j} \quad \text{where} \quad \Upsilon^{\mathcal{M}}_{i,j} := \Upsilon^{\mathcal{M}}_{i,j} (l_{j-1}, \ldots, l_{i})$ \Rightarrow $O_N \subset O_M$ iff $r_{i,j} \leq r_{i,j} \quad \forall i,j : i < j$

The orbits On and the relations among their closures are described by <u>RANM TUPLES</u>: $i \int \mathcal{M} = (\xi_{1, -}, \xi_{m-1}), \quad \underline{Y}^{M} := (Y_{i, j}^{M})_{i < j} \quad \text{where} \quad f_{i, j}^{M} := Y_{am} \mathcal{M} \left(\xi_{j-1} \cdots \xi_{i} \right)$ \rightarrow $O_N \subset O_M$ iff $r_{i,j} \leq r_{i,j} \quad \forall i,j : i < j$ $\begin{array}{c} \left(\begin{array}{c}1&1&1\\0&1&1\\0&0&1\end{array}\right) =: M \\ \left(\begin{array}{c}1&1&1\\0&0&0\end{array}\right) =: M \\ \left(\begin{array}{c}1&1&1\\0&0&0\end{array}\right) =: N \\ \left(\begin{array}{c}0&1&1\\0&0&0\end{array}\right) =: N \\ \left(\begin{array}{c}1&1&1\\0&0&0\end{array}\right) =: N \\ \left(\begin{array}{c}1&1&1\\0&0&0\\0&0\\0&0&0\end{array}\right) =: N \\ \left(\begin{array}{c}1&1&1\\0&0&0\\0&0\\0&0\\0&0&0\end{array}\right)$ $\Upsilon^{M} = (3), \Upsilon^{N} = (2)$ (3) ~> if n+1=3, the (pontial) order on the rank tuples is: (2) (1)

~ dimean degemenations of Schubert varieties (vie quiver Grossmannians)

We consider elements $q_{*} = (q_{1}, q_{n}) \in \prod B$ acting on the tuples $f_{*} = (f_{1,-}, f_{n-1})$ and, consequently, on their restrictions. Def: <u>M degenerates to N</u> if $N \in \overline{O}_{M}$ ($O_{N} \subset \overline{O}_{M}$)

Am: parametrisation of (the closure of) the orbits On.

We consider elements $q_{*} = (q_{1-}, q_{m}) \in \prod B$ acting on the tuples $g_{*} = (g_{1-}, g_{m-1})$ and, consequently, on their restrictions. D.J. M degementes to N if N $\in \overline{O}_{M}$ ($O_{N} \subset \overline{O}_{M}$)

Am: parametrisation of (the closure of) the orbits On.

• $| \{ \text{orgsmiss} \\ Om \} | < \infty$ ~> Theorem:

We consider elements $q_{*} = (q_{1}, q_{m}) \in \prod B$ acting on the tuples $f_{*} = (f_{1}, f_{m-1})$ and, consequently, on their restrictions. Def: <u>Malagementes to N</u> if $N \in \overline{O}_{M}$ ($O_{N} \subset \overline{O}_{M}$) Am: parametrisation of (the closure of) the orbits On. • $| \{ \text{org} \in \mathcal{O}_{M} \} | < \infty$ ~> Theorem:

· 7 combinitat description:

 $O_N \subset O_M$ is $\underline{r}^N \leq \underline{r}^M$

where r' r' are "like" rank tuples

+ (1)EXI —: M $\begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{pmatrix}$ $\underline{f}^{\lambda} = (1, 1, 2, 0, 1, 2)$ $\Gamma^{m}=(1,12,1,2,3)$ Ranks of all non-trivial south-west minors Here $\Upsilon^{\lambda} \leq \Upsilon^{M} = 7 O_{N} \subset O_{M}$.

hank Ron.