Do we need all Sylow subgroups?

Juan Martínez Madrid

GAAGC: Levico Terme 2024

Joint work with Alexander Moretó and Attila Maróti

Juan Martínez Madrid GAAGC: Levico Terme 2024

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

We establish some notation for the remaining of the talk. It is important to remark that **all groups considered here are finite**.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

We establish some notation for the remaining of the talk. It is important to remark that **all groups considered here are finite**.

Notations

Let G be a group and let p be a prime. Then

- A subgroup P ≤ G is a Sylow p-subgroup of G if p does not divide |G : P|.
- An element $x \in G$ is a *p*-element if $o(x) = p^a$ for some $a \ge 0$.
- G_p denotes the set of *p*-elements of *G*.
- $Syl_p(G)$ denotes the set of Sylow *p*-subgroups of *G*.

It is easy to see that

$$\bigcup_{P\in {\rm Syl}_p(G)}P=G_p$$

Question

Do we need all Sylow *p*-subgroups to cover G_p ?

- * @ * * 注 * * 注 * - 注

It is easy to see that

$$\bigcup_{P\in {\rm Syl}_p(G)}P=G_p$$

Question

Do we need all Sylow *p*-subgroups to cover G_p ?

The answer is **NO**. However, the answer is yes more often than one could perhaps expect.

▲御★ ▲産★ ▲産★ 三産一

We say that G possesses **redundant Sylow** p-subgroups if we do not need all Sylow p-subgroups to cover G_p .

At the beginning, using GAP, we obtained the following examples of groups with redundant Sylow subgroups:

- (目) (目) (日) (1

We say that G possesses **redundant Sylow** p-subgroups if we do not need all Sylow p-subgroups to cover G_p .

At the beginning, using GAP, we obtained the following examples of groups with redundant Sylow subgroups:

 (I) In the SmallGroup library we only found examples of groups with redundant Sylow 2-subgroups. The smallest of them are SmallGroup(108,17) and SmallGroup(108,40).

We say that G possesses **redundant Sylow** p-subgroups if we do not need all Sylow p-subgroups to cover G_p .

At the beginning, using GAP, we obtained the following examples of groups with redundant Sylow subgroups:

- (I) In the SmallGroup library we only found examples of groups with redundant Sylow 2-subgroups. The smallest of them are SmallGroup(108,17) and SmallGroup(108,40).
- (II) A_9 possesses redundant Sylow 2-subgroups.

We say that G possesses **redundant Sylow** p-subgroups if we do not need all Sylow p-subgroups to cover G_p .

At the beginning, using GAP, we obtained the following examples of groups with redundant Sylow subgroups:

- (I) In the SmallGroup library we only found examples of groups with redundant Sylow 2-subgroups. The smallest of them are SmallGroup(108,17) and SmallGroup(108,40).
- (II) A_9 possesses redundant Sylow 2-subgroups.
- (III) Both SL(2, q) and PSL(2, q) posses redundant Sylow 2-subgroups for $q \in \{11, 13, 19, 23, 25, 27, 29, 37, ...\}$.

We say that G possesses **redundant Sylow** p-subgroups if we do not need all Sylow p-subgroups to cover G_p .

At the beginning, using GAP, we obtained the following examples of groups with redundant Sylow subgroups:

- (I) In the SmallGroup library we only found examples of groups with redundant Sylow 2-subgroups. The smallest of them are SmallGroup(108,17) and SmallGroup(108,40).
- (II) A_9 possesses redundant Sylow 2-subgroups.
- (III) Both SL(2, q) and PSL(2, q) posses redundant Sylow 2-subgroups for $q \in \{11, 13, 19, 23, 25, 27, 29, 37, ...\}$.
- (IV) PSL(3,7) possesses redundant Sylow 3-subgroups.

In view of these examples, it seems to be no pattern for the existence of redundant Sylow *p*-subgroups. Now, the natural questions that arise are the following.

Question

Which groups possess a redundant Sylow *p*-subgroup?

Question

Which *p*-groups can appear as the Sylow subgroup of a group with a redundant Sylow *p*-subgroup?

Proposition

G does not possess redundant Sylow *p*-subgroups if and only if there exists $x \in G_p$ such that *x* lies in a unique Sylow *p*-subgroup.

Proof.

Juan Martínez Madrid GAAGC: Levico Terme 2024

Proposition

G does not possess redundant Sylow *p*-subgroups if and only if there exists $x \in G_p$ such that *x* lies in a unique Sylow *p*-subgroup.

Proof.

Let $\operatorname{Syl}_p(G) = \{P_1, P_2, \dots, P_n\}$. The result is clear for n = 1. Assume that n > 1. The group G has a redundant Sylow p-subgroup if and only if $G_p = \bigcup_{i \neq j} P_i$ for some j. This happens if and only if $P_j \subseteq \bigcup_{i \neq j} P_i$, which is equivalent to saying that every element of P_j lies in more than one Sylow p-subgroup. \Box

This alternative definition provides some conditions for groups for possessing redundant Sylow Subgroups.

This alternative definition provides some conditions for groups for possessing redundant Sylow Subgroups.

• If G has cyclic Sylow p-subgroups, then G does not possesses redundant Sylow p-subgroups.

This alternative definition provides some conditions for groups for possessing redundant Sylow Subgroups.

- If G has cyclic Sylow p-subgroups, then G does not possesses redundant Sylow p-subgroups.
- If P ∩ Q = 1 for every P, Q ∈ Syl_p(G) with P ≠ Q, then G does not possesses redundant Sylow p-subgroups.

Theorem (Navarro)

Let G be a finite group. Suppose that x belongs to a unique Sylow p-subgroup P of G. Then $C_G(x) \subseteq N_G(P)$.

Proof.

Let $c \in C_G(x)$. Then $x^c = x \in P$, so $x \in P^{c^{-1}}$. Since P is the unique Sylow p-subgroup that contains x, we deduce that $P = P^{c^{-1}}$, so $c \in N_G(P)$, as wanted.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Theorem (Navarro)

Let G be a finite group. Suppose that x belongs to a unique Sylow p-subgroup P of G. Then $C_G(x) \subseteq N_G(P)$.

Proof.

Let $c \in C_G(x)$. Then $x^c = x \in P$, so $x \in P^{c^{-1}}$. Since P is the unique Sylow p-subgroup that contains x, we deduce that $P = P^{c^{-1}}$, so $c \in N_G(P)$, as wanted.

Let *M* be the Monster Group $P \in Syl_7(M)$. We know that 5 divides $|C_G(x)|$ for any $x \in P$, but $|N_G(P)|$ is not divisible by 5. Thus, *M* possesses redundant Sylow 7-subgroups.

The following was pointed out to us by Thomas Weigel.

Theorem

Let G be a group of Lie type in characteristic p. Then there exists $x \in G_p$ such that x lies in a unique Borel subgroup of G. In particular, x lies in a Sylow p-subgroup.

As a consequence the groups of Lie type in characteristic p do not possess redundant Sylow p-subgroups.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Maróti, M. and Moretó, 2024 and Sambale, 2024)

Let p be a prime, and let P be a non-cyclic p-group. There exists a **solvable** group G such that possesses redundant Sylow p-subgroups and the Sylow subgroups of G are isomorphic to P.

(日)

Theorem (Maróti, M. and Moretó, 2024 and Sambale, 2024)

Let p be a prime, and let P be a non-cyclic p-group. There exists a **solvable** group G such that possesses redundant Sylow p-subgroups and the Sylow subgroups of G are isomorphic to P.

Remark

In the original result, we had the extra hypothesis "P has exponent p". This hypothesis was removed by Sambale.

All the examples have the form G = P ⋉ N, for a solvable group N with (|N|, p) = 1.

<ロト < 回 > < 目 > < 目 > < 目 > の へ ?? 11/19

- All the examples have the form G = P ⋉ N, for a solvable group N with (|N|, p) = 1.
- In this case, having redundant Sylow subgroups is equivalent to satisfying C_N(P) = 1 and C_N(x) > 1 for all x ∈ P.

◆□ ▶ ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ⑦ Q @ 11/19

- All the examples have the form G = P ⋉ N, for a solvable group N with (|N|, p) = 1.
- In this case, having redundant Sylow subgroups is equivalent to satisfying C_N(P) = 1 and C_N(x) > 1 for all x ∈ P.
- The original construction and Sambale's construction differ in the way of choosing the complement *N*.

- All the examples have the form G = P ⋉ N, for a solvable group N with (|N|, p) = 1.
- In this case, having redundant Sylow subgroups is equivalent to satisfying $C_N(P) = 1$ and $C_N(x) > 1$ for all $x \in P$.
- The original construction and Sambale's construction differ in the way of choosing the complement *N*.
- In fact, we can produce examples with arbitrarily large Fitting height.

◆□ ▶ ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ⑦ Q @ 11/19

Given p a prime, we also have examples of non-solvable groups with redundant Sylow p-subgroups.

Theorem (Maróti, M. and Moretó, 2024)

Let p be an odd prime and let q be a prime power such that p divides q - 1 but p^2 does not divide q - 1. Then

- (i) If 1 < n < p, then GL(n, q) does not posses redundant Sylow p-subgroups.
- (ii) GL(p,q) possesses a redundant Sylow p-subgroup.

Remark

We observe that such a prime power q exists by Dirichlet's Theorem.

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 - のへで 12/19

Theorem (Maróti, M. and Moretó, 2024)

Let $n \ge 2$. Then S_n does not possess redundant Sylow p-subgroups for any prime p. In particular, if p > 2 then A_n does not possess redundant Sylow p-subgroups.

Proof.

Theorem (Maróti, M. and Moretó, 2024)

Let $n \ge 2$. Then S_n does not possess redundant Sylow p-subgroups for any prime p. In particular, if p > 2 then A_n does not possess redundant Sylow p-subgroups.

Proof.

Let $n = \sum_{i=0}^{k} a_i p^i$ be the p-adic expansion of n. Let $x \in S_n$ be an element with a_i cycles of length p^i for each i. Then, x lies in a unique Sylow p-subgroup of S_n

Let n = 15 and p = 2. Then $15 = 2^3 + 2^2 + 2^1 + 1$ the element

(1, 2, 3, 4, 5, 6, 7, 8)(9, 10, 11, 12)(13, 14)(15)

lies in a unique Sylow 2-subgroup of S_{15} .

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の Q @ 14/19

Let n = 15 and p = 2. Then $15 = 2^3 + 2^2 + 2^1 + 1$ the element (1, 2, 3, 4, 5, 6, 7, 8)(9, 10, 11, 12)(13, 14)(15) lies in a unique Sylow 2-subgroup of S_{15} .

Let n = 15 and p = 3. Then $15 = 3^2 + 3^1 + 3^1$ the element (1, 2, 3, 4, 5, 6, 7, 8, 9)(10, 11, 12)(13, 14, 15)

lies in a unique Sylow 3-subgroup of S_{15} .

<□▶ < □▶ < □▶ < 三▶ < 三▶ 三 の < で 14/19

Question

What happens with A_n when p = 2?

Theorem (Maróti, M. and Moretó, 2024)

Let $n \ge 6$ with $n = \sum_{i=r}^{k} a_i 2^i$, where $a_r, a_{r+1}, \ldots, a_k \in \{0, 1\}$, $a_r = a_k = 1$. The group A_n has a redundant Sylow 2-subgroup if and only if the following conditions are satisfied:

- $\sum_{i=1}^{k} a_i \equiv 1 \pmod{2}$ if *n* is odd.
- $r \ge 2$ is even and $\sum_{i=r}^{k} a_i \equiv 1 \pmod{2}$ if n is even.

Thus, A_9 and A_{16} are the first alternating groups with redundant Sylow 2-subgroups.

In fact, it was a consequence of the following result.

Theorem

Let $n \ge 6$ and let $x \in (S_n)_2$. Then x lies in a unique Sylow 2-subgroup of S_n if and only if x has at most two fixed points and all cycles of x of length bigger than one have different lengths.

(日本)(日本)(日本)

э.

In fact, it was a consequence of the following result.

Theorem

Let $n \ge 6$ and let $x \in (S_n)_2$. Then x lies in a unique Sylow 2-subgroup of S_n if and only if x has at most two fixed points and all cycles of x of length bigger than one have different lengths.

Assume that n = 8. Then $8 = 2^3$ and

 $(1, 2, 3, 4, 5, 6, 7, 8) \not\in A_8$

but $8 - 2 = 2^2 + 2^1$ and

 $(1, 2, 3, 4)(5, 6)(7)(8) \in A_8$

(日)

Assume that n = 9. Then $9 = 2^3 + 1$ and

 $(1,2,3,4,5,6,7,8)(9)\not\in A_9$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Assume that n = 9. Then $9 = 2^3 + 1$ and

 $(1, 2, 3, 4, 5, 6, 7, 8)(9) \not\in A_9$

Assume that n = 16. Then $16 = 2^4$ and

 $(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16) \not\in A_{16}$

moreover $16 - 2 = 2^3 + 2^2 + 2^1$ and

 $(1, 2, 3, 4, 5, 6, 7, 8)(9, 10, 11, 12)(13, 14)(15)(16) \not\in A_{16}$

<□▶ < □▶ < □▶ < ≧▶ < ≧▶ ≧ り < ○ 17/19

Theorem (Maróti, M. and Moretó, 2024)

The group PSL(2, q) possesses redundant Sylow p-subgroups if and only if p = 2 and q is none of the following.

a)
$$q = 2^k$$
 for an integer k.

b)
$$q = 2^k + 1$$
 for an integer k.

c)
$$q = 2^k - 1$$
 for an integer k.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 – のへで

Theorem (Maróti, M. and Moretó, 2024)

The group PSL(2, q) possesses redundant Sylow p-subgroups if and only if p = 2 and q is none of the following.

a)
$$q = 2^k$$
 for an integer k.

b)
$$q = 2^k + 1$$
 for an integer k.

c)
$$q = 2^k - 1$$
 for an integer k.

Remark

- If p divides q, then the Sylow p-subgroups of PSL(2, q) intersect trivially.
- (II) If p is odd and does not divide q, then PSL(2, q) possesses cyclic Sylow p-subgroups.

In both cases, PSL(2, q) does not possess redundant Sylow *p*-subgroups.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ● ● ●

Thank you for your attention.

Any question?

Juan Martínez Madrid GAAGC: Levico Terme 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで