Multiplicity-free induced characters of symmetric groups

Pavel Turek

Royal Holloway, University of London

June 04, 2024

Based on arXiv:2309.07761 To appear in Transactions of the AMS

Introduction

2 Representation theory of symmetric groups in characteristic 0

3 Necessary conditions for multiplicity-free subgroups

4 Combinatorics for index two subgroups

5 Main results

2/21

Introduction

2 Representation theory of symmetric groups in characteristic 0

3 Necessary conditions for multiplicity-free subgroups

4 Combinatorics for index two subgroups

5 Main results

Multiplicity-free characters

Let G be a finite group and V a finite-dimensional $\mathbb{C}G$ -module.

∃ >

Let G be a finite group and V a finite-dimensional $\mathbb{C}G$ -module. The *character* of V is a (class) function $\rho : G \to \mathbb{C}$ given by the traces of the G-action on V.

Multiplicity-free characters

Let G be a finite group and V a finite-dimensional $\mathbb{C}G$ -module. The *character* of V is a (class) function $\rho : G \to \mathbb{C}$ given by the traces of the G-action on V. We adapt the following notions to characters:

• direct sum and tensor products,

- direct sum and tensor products,
- irreducibility and decomposition,

- direct sum and tensor products,
- irreducibility and decomposition,
- induction and restriction.

- direct sum and tensor products,
- irreducibility and decomposition,
- induction and restriction.

We say that a character is *multiplicity-free* if it has no irreducible constituent of multiplicity more than one.

- direct sum and tensor products,
- irreducibility and decomposition,
- induction and restriction.

We say that a character is *multiplicity-free* if it has no irreducible constituent of multiplicity more than one.

Example: Any irreducible character is multiplicity-free.

- direct sum and tensor products,
- irreducibility and decomposition,
- induction and restriction.

We say that a character is *multiplicity-free* if it has no irreducible constituent of multiplicity more than one.

Example: Any irreducible character is multiplicity-free. The character of the regular representation of G is multiplicity-free if and only if G is abelian.

- direct sum and tensor products,
- irreducibility and decomposition,
- induction and restriction.

We say that a character is *multiplicity-free* if it has no irreducible constituent of multiplicity more than one.

Example: Any irreducible character is multiplicity-free. The character of the regular representation of G is multiplicity-free if and only if G is abelian. The natural permutation characters of symmetric groups are multiplicity-free.

Fix a non-negative integer n.

æ

→ < ∃ →</p>

Image: A mathematical states and a mathem

Fix a non-negative integer *n*. Given a character ρ of a subgroup $G \leq S_n$, we say ρ is *induced-multiplicity-free* if $\rho \uparrow_G^{S_n}$ is multiplicity-free.

э

Example: The groups S_n and A_n are multiplicity-free.

Example: The groups S_n and A_n are multiplicity-free. The trivial group is multiplicity-free if and only if $n \leq 2$.

Example: The groups S_n and A_n are multiplicity-free. The trivial group is multiplicity-free if and only if $n \leq 2$.

Q1: What are the multiplicity-free subgroups of S_n ?

Example: The groups S_n and A_n are multiplicity-free. The trivial group is multiplicity-free if and only if $n \leq 2$.

Q1: What are the multiplicity-free subgroups of S_n ? **Q2:** For each multiplicity-free subgroup $G \le S_n$ what are the irreducible induced-multiplicity-free characters of G?

The classification of multiplicity-free permutation characters of S_n - Wildon in 2009 (for $n \ge 66$) and independently Godsil and Meagher in 2010.

The classification of multiplicity-free permutation characters of S_n -Wildon in 2009 (for $n \ge 66$) and independently Godsil and Meagher in 2010. These are *Gelfand pairs* (S_n, G) .

The classification of multiplicity-free permutation characters of S_n -Wildon in 2009 (for $n \ge 66$) and independently Godsil and Meagher in 2010. These are *Gelfand pairs* (S_n , G). The classification of subgroups $G \le S_n$ with all irreducible characters of Gbeing induced-multiplicity-free - Anderson, Humphries and Nicholson in

2021.

The classification of multiplicity-free permutation characters of S_n -Wildon in 2009 (for $n \ge 66$) and independently Godsil and Meagher in 2010. These are *Gelfand pairs* (S_n, G) .

The classification of subgroups $G \leq S_n$ with all irreducible characters of G being induced-multiplicity-free - Anderson, Humphries and Nicholson in 2021. These are strong Gelfand pairs (S_n, G) .

The classification of multiplicity-free permutation characters of S_n -Wildon in 2009 (for $n \ge 66$) and independently Godsil and Meagher in 2010. These are *Gelfand pairs* (S_n, G) .

The classification of subgroups $G \leq S_n$ with all irreducible characters of G being induced-multiplicity-free - Anderson, Humphries and Nicholson in 2021. These are *strong Gelfand pairs* (S_n, G) .

Our **Q1** asks for 'weak Gelfand pairs' (S_n, G) .

The classification of multiplicity-free permutation characters of S_n -Wildon in 2009 (for $n \ge 66$) and independently Godsil and Meagher in 2010. These are *Gelfand pairs* (S_n , G). The classification of subgroups $G \le S_n$ with all irreducible characters of Gbeing induced-multiplicity-free - Anderson, Humphries and Nicholson in

2021. These are strong Gelfand pairs (S_n, G) . Our **Q1** asks for 'weak Gelfand pairs' (S_n, G) .

There are related classifications of various multiplicity-free symmetric functions:

• products of Schur functions - Stembridge 2001,

The classification of multiplicity-free permutation characters of S_n -Wildon in 2009 (for $n \ge 66$) and independently Godsil and Meagher in 2010. These are *Gelfand pairs* (S_n , G). The classification of subgroups $G \le S_n$ with all irreducible characters of Gbeing induced-multiplicity-free - Anderson, Humphries and Nicholson in 2021. These are *strong Gelfand pairs* (S_n , G).

Our **Q1** asks for 'weak Gelfand pairs' (S_n, G) .

There are related classifications of various multiplicity-free symmetric functions:

- products of Schur functions Stembridge 2001,
- plethysms of Schur functions Bessenrodt, Bowman and Paget 2022,

The classification of multiplicity-free permutation characters of S_n -Wildon in 2009 (for $n \ge 66$) and independently Godsil and Meagher in 2010. These are *Gelfand pairs* (S_n , G). The classification of subgroups $G \le S_n$ with all irreducible characters of Gbeing induced-multiplicity-free - Anderson, Humphries and Nicholson in 2021. These are *strong Gelfand pairs* (S_n , G). Our **Q1** asks for 'weak Gelfand pairs' (S_n , G).

There are related classifications of various multiplicity-free symmetric functions:

- products of Schur functions Stembridge 2001,
- plethysms of Schur functions Bessenrodt, Bowman and Paget 2022,
- combined products $s_{\lambda}(s_{\nu} \circ s_{\mu})$ T. 2023.

Introduction

2 Representation theory of symmetric groups in characteristic 0

3 Necessary conditions for multiplicity-free subgroups

4 Combinatorics for index two subgroups

5 Main results

A partition is a non-increasing sequence $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_t)$ of positive integers with size $|\lambda| := \sum_{i=1}^t \lambda_i$.

э

8/21

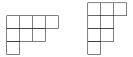
A *partition* is a non-increasing sequence $\lambda = (\lambda_1, \lambda_2, ..., \lambda_t)$ of positive integers with *size* $|\lambda| := \sum_{i=1}^t \lambda_i$. We call the elements λ_i *parts* and say λ is a partition of n and write $\lambda \vdash n$ if $|\lambda| = n$.

.

A partition is a non-increasing sequence $\lambda = (\lambda_1, \lambda_2, ..., \lambda_t)$ of positive integers with size $|\lambda| := \sum_{i=1}^t \lambda_i$. We call the elements λ_i parts and say λ is a partition of n and write $\lambda \vdash n$ if $|\lambda| = n$. Example: The Young diagram of the partition (4, 3, 1)

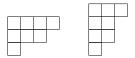
A partition is a non-increasing sequence $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_t)$ of positive integers with size $|\lambda| := \sum_{i=1}^t \lambda_i$. We call the elements λ_i parts and say λ is a partition of n and write $\lambda \vdash n$ if $|\lambda| = n$.

Example: The Young diagrams of the partition (4, 3, 1) and its *conjugate* partition (3, 2, 2, 1).



A partition is a non-increasing sequence $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_t)$ of positive integers with size $|\lambda| := \sum_{i=1}^t \lambda_i$. We call the elements λ_i parts and say λ is a partition of n and write $\lambda \vdash n$ if $|\lambda| = n$.

Example: The Young diagrams of the partition (4, 3, 1) and its conjugate partition (3, 2, 2, 1) often denoted as $(3, 2^2, 1)$.



The irreducible characters of the symmetric group S_n , commonly denoted by χ^{λ} , are labelled by partitions λ of n. The irreducible characters of the symmetric group S_n , commonly denoted by χ^{λ} , are labelled by partitions λ of n. We will often use the identity $\chi^{\lambda} \times \text{sgn} = \chi^{\lambda'}$.

Example: The characters $\chi^{(n)}$ and $\chi^{(1^n)}$ are the trivial character and the sign of S_n , respectively.

Example: The characters $\chi^{(n)}$ and $\chi^{(1^n)}$ are the trivial character and the sign of S_n , respectively. The natural permutation character of S_n decomposes as $\chi^{(n)} + \chi^{(n-1,1)}$.

Example: The characters $\chi^{(n)}$ and $\chi^{(1^n)}$ are the trivial character and the sign of S_n , respectively. The natural permutation character of S_n decomposes as $\chi^{(n)} + \chi^{(n-1,1)}$.

The irreducible characters of $S_k \times S_l$ are $\chi^{\mu} \boxtimes \chi^{\nu}$ where $\mu \vdash k$ and $\nu \vdash l$.

Example: The characters $\chi^{(n)}$ and $\chi^{(1^n)}$ are the trivial character and the sign of S_n , respectively. The natural permutation character of S_n decomposes as $\chi^{(n)} + \chi^{(n-1,1)}$.

The irreducible characters of $S_k \times S_l$ are $\chi^{\mu} \boxtimes \chi^{\nu}$ where $\mu \vdash k$ and $\nu \vdash l$. The irreducible characters of $S_m \wr S_h$ are constructed from the *elementary irreducible characters* $\chi^{\mu} \wr \chi^{\nu} := (\chi^{\mu})^{\times h} \chi^{\nu}$ where $\mu \vdash m$ and $\nu \vdash h$.

Introduction

2 Representation theory of symmetric groups in characteristic 0

3 Necessary conditions for multiplicity-free subgroups

4 Combinatorics for index two subgroups

5 Main results

Multiplicity-free characters of S_n have degree at most $a_n := \sum_{\lambda \vdash n} \chi^{\lambda}(1)$.

æ

Image: A matrix and a matrix

Multiplicity-free characters of S_n have degree at most $a_n := \sum_{\lambda \vdash n} \chi^{\lambda}(1)$. Consequently, multiplicity-free subgroups G satisfy $|G| \ge n!/a_n$.

э

Multiplicity-free characters of S_n have degree at most $a_n := \sum_{\lambda \vdash n} \chi^{\lambda}(1)$. Consequently, multiplicity-free subgroups G satisfy $|G| \ge n!/a_n$. In fact a_n counts the involutions of S_n and thus for $n \ge 7$, $a_n < n! / (2 \lceil \frac{n}{2} \rceil!)$

э

Multiplicity-free characters of S_n have degree at most $a_n := \sum_{\lambda \vdash n} \chi^{\lambda}(1)$. Consequently, multiplicity-free subgroups G satisfy $|G| \ge n!/a_n$. In fact a_n counts the involutions of S_n and thus for $n \ge 7$, $a_n < n!/(2\lceil \frac{n}{2}\rceil!)$ (and for $n \ge 11$, also $a_n < n!/(2^{n-1})$).

Multiplicity-free characters of S_n have degree at most $a_n := \sum_{\lambda \vdash n} \chi^{\lambda}(1)$. Consequently, multiplicity-free subgroups G satisfy $|G| \ge n!/a_n$. In fact a_n counts the involutions of S_n and thus for $n \ge 7$, $a_n < n!/(2\lceil \frac{n}{2}\rceil!)$ (and for $n \ge 11$, also $a_n < n!/(2^{n-1})$).

Theorem (Maróti, 2002)

Let G be a primitive subgroup of S_n which is not S_n or A_n . Then the order of G is less or equal to 2^{n-1} or $n \le 24$.

Multiplicity-free characters of S_n have degree at most $a_n := \sum_{\lambda \vdash n} \chi^{\lambda}(1)$. Consequently, multiplicity-free subgroups G satisfy $|G| \ge n!/a_n$. In fact a_n counts the involutions of S_n and thus for $n \ge 7$, $a_n < n!/(2\lceil \frac{n}{2}\rceil!)$ (and for $n \ge 11$, also $a_n < n!/(2^{n-1})$).

Theorem (Maróti, 2002)

Let G be a primitive subgroup of S_n which is not S_n or A_n . Then the order of G is less or equal to 2^{n-1} or $n \le 24$.

The lower bound on |G| also eliminates, for example, the diagonal subgroup of $S_k \times S_k$.

Theorem (Stembridge, 2001)

Let n = a + b + c for positive integers a, b and c. Then $S_a \times S_b \times S_c$ is not multiplicity-free.

Theorem (Stembridge, 2001)

Let n = a + b + c for positive integers a, b and c. Then $S_a \times S_b \times S_c$ is not multiplicity-free.

With an extra work I have shown that multiplicity-free subgroups $K \times L \leq S_k \times S_l$ satisfy either $K = S_k$ or $K = A_k$ (or $L = S_l$ or $L = A_l$).

Theorem (Stembridge, 2001)

Let n = a + b + c for positive integers a, b and c. Then $S_a \times S_b \times S_c$ is not multiplicity-free.

With an extra work I have shown that multiplicity-free subgroups $K \times L \leq S_k \times S_l$ satisfy either $K = S_k$ or $K = A_k$ (or $L = S_l$ or $L = A_l$). Moreover if $K = A_k$, then $l \leq 9$.

< □ > < □ > < □ > < □ >

Theorem (Stembridge, 2001)

Let n = a + b + c for positive integers a, b and c. Then $S_a \times S_b \times S_c$ is not multiplicity-free.

With an extra work I have shown that multiplicity-free subgroups $K \times L \leq S_k \times S_l$ satisfy either $K = S_k$ or $K = A_k$ (or $L = S_l$ or $L = A_l$). Moreover if $K = A_k$, then $l \leq 9$.

This impacts non-elementary irreducible induced-multiplicity-free characters of wreath products.

э

Introduction

2 Representation theory of symmetric groups in characteristic 0

3 Necessary conditions for multiplicity-free subgroups

4 Combinatorics for index two subgroups

5 Main results

Suppose that $G \neq N := G \cap A_n$.

∃ →

< □ > < 同 >

æ

Suppose that $G \neq N := G \cap A_n$. If ρ is an irreducible character of G and $\rho \times \text{sgn} \neq \rho$, then $\kappa := \rho \bigcup_{N=0}^{G} \beta$ is irreducible

Suppose that $G \neq N := G \cap A_n$. If ρ is an irreducible character of G and $\rho \times \text{sgn} \neq \rho$, then $\kappa := \rho \downarrow_N^G$ is irreducible and $\kappa \uparrow_N^{S_n} = \rho \uparrow_G^{S_n} + \rho \uparrow_G^{S_n} \times \text{sgn}$.

• ρ is induced-multiplicity-free

- ρ is induced-multiplicity-free, and
- $\rho \uparrow_{G}^{S_n}$ does not have constituents of the form χ^{λ} and $\chi^{\lambda'}$ for some λ .

• ρ is induced-multiplicity-free, and

• $\rho \uparrow_{G}^{S_n}$ does not have constituents of the form χ^{λ} and $\chi^{\lambda'}$ for some λ .

Example: Let $G = S_2 \times S_3$ and $\rho = \chi^{(2)} \boxtimes \chi^{(2,1)}$. Since $\rho \uparrow_G^{S_5}$ decomposes as $\chi^{(4,1)} + \chi^{(3,2)} + \chi^{(3,1^2)} + \chi^{(2^2,1)}$, the character $\rho \downarrow_N^G$ is not induced-multiplicity-free.

くぼう くほう くほう しゅ

• ρ is induced-multiplicity-free, and

• $\rho \uparrow_{G}^{S_n}$ does not have constituents of the form χ^{λ} and $\chi^{\lambda'}$ for some λ .

Example: Let $G = S_2 \times S_3$ and $\rho = \chi^{(2)} \boxtimes \chi^{(2,1)}$. Since $\rho \uparrow_G^{S_5}$ decomposes as $\chi^{(4,1)} + \chi^{(3,2)} + \chi^{(3,1^2)} + \chi^{(2^2,1)}$, the character $\rho \downarrow_N^G$ is not induced-multiplicity-free.

くぼう くほう くほう しゅ

For $a, b \in \mathbb{N}$ we say that a partition λ of size 2ab is (a, b)-birectangular if for all $1 \leq i \leq 2b$ the equality $\lambda_i + \lambda_{2b+1-i} = 2a$ holds true.

For $a, b \in \mathbb{N}$ we say that a partition λ of size 2ab is (a, b)-birectangular if for all $1 \leq i \leq 2b$ the equality $\lambda_i + \lambda_{2b+1-i} = 2a$ holds true.

Proposition

Let $\rho = \chi^{(a^b)} \wr \chi^{\nu}$. The character $\rho \upharpoonright_{S_{ab} \land S_2}^{S_{2ab}}$ with $\nu = (2)$ and $\nu = (1^2)$ is multiplicity-free with constituents labelled by (a, b)-birectangular partitions λ such that $\lambda_1 + \cdots + \lambda_b$ is even, respectively, odd.

For $a, b \in \mathbb{N}$ we say that a partition λ of size 2ab is (a, b)-birectangular if for all $1 \leq i \leq 2b$ the equality $\lambda_i + \lambda_{2b+1-i} = 2a$ holds true.

Proposition

Let $\rho = \chi^{(a^b)} \wr \chi^{\nu}$. The character $\rho \uparrow_{S_{ab} \downarrow S_2}^{S_{2ab}}$ with $\nu = (2)$ and $\nu = (1^2)$ is multiplicity-free with constituents labelled by (a, b)-birectangular partitions λ such that $\lambda_1 + \cdots + \lambda_b$ is even, respectively, odd.

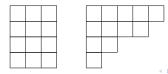
Example: Let $\rho_1 = \chi^{(3^2)} \wr \chi^{(2)}$ and $\rho_2 = \chi^{(3^2)} \wr \chi^{(1^2)}$. One of the irreducible constituents of $\rho_1 \uparrow_{S_6 \wr S_2}^{S_{12}}$ is labelled by (3⁴).

For $a, b \in \mathbb{N}$ we say that a partition λ of size 2ab is (a, b)-birectangular if for all $1 \leq i \leq 2b$ the equality $\lambda_i + \lambda_{2b+1-i} = 2a$ holds true.

Proposition

Let $\rho = \chi^{(a^b)} \wr \chi^{\nu}$. The character $\rho \uparrow_{S_{ab} \land S_2}^{S_{2ab}}$ with $\nu = (2)$ and $\nu = (1^2)$ is multiplicity-free with constituents labelled by (a, b)-birectangular partitions λ such that $\lambda_1 + \cdots + \lambda_b$ is even, respectively, odd.

Example: Let $\rho_1 = \chi^{(3^2)} \wr \chi^{(2)}$ and $\rho_2 = \chi^{(3^2)} \wr \chi^{(1^2)}$. One of the irreducible constituents of $\rho_1 \uparrow_{S_6 \wr S_2}^{S_{12}}$ is labelled by (3⁴). If we consider $\rho_2 \uparrow_{S_6 \wr S_2}^{S_{12}}$ instead, we obtain a label (5, 4, 2, 1).



June 04, 2024

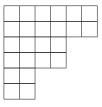
Proposition (T, 2023)

Let a > b be positive integers and write d = a - b. There is a partition λ such that λ and λ' are (a, b)-birectangular if and only if d|a. Moreover, in such a case $\lambda = ((2b)^{2d}, (2b - 2d)^{2d}, \dots, (2d)^{2d})$.

Proposition (T, 2023)

Let a > b be positive integers and write d = a - b. There is a partition λ such that λ and λ' are (a, b)-birectangular if and only if d|a. Moreover, in such a case $\lambda = ((2b)^{2d}, (2b - 2d)^{2d}, \dots, (2d)^{2d})$.

Example: The unique partition $\lambda = (6^2, 4^2, 2^2)$ such that λ and λ' are both (4,3)-birectangular.



Example: birectangular partitions

Recall the setting $G \neq N := G \cap A_n$ and the following results.

< A > <

э

Example: birectangular partitions

Recall the setting $G \neq N := G \cap A_n$ and the following results.

• If ρ is an irreducible induced-multiplicity-free character of G, then (under mild conditions) $\rho \downarrow_N^G$ is induced-multiplicity-free if and only if there are no constituents χ^{λ} and $\chi^{\lambda'}$ of $\rho \uparrow_G^{S_n}$.

- If ρ is an irreducible induced-multiplicity-free character of G, then (under mild conditions) $\rho \downarrow_N^G$ is induced-multiplicity-free if and only if there are no constituents χ^{λ} and $\chi^{\lambda'}$ of $\rho \uparrow_G^{S_n}$.
- If ρ = χ^(a^b) ≥ χ^ν, then ρ^{S_{2ab}}_{S_{ab}S₂} is multiplicity-free with irreducible constituents labelled by (a, b)-birectangular partitions λ such that λ₁ + · · · + λ_b is even for ν = (2), respectively, odd for ν = (1²).

- If ρ is an irreducible induced-multiplicity-free character of G, then (under mild conditions) $\rho \downarrow_N^G$ is induced-multiplicity-free if and only if there are no constituents χ^{λ} and $\chi^{\lambda'}$ of $\rho \uparrow_G^{S_n}$.
- If ρ = χ^(a^b) ≥ χ^ν, then ρ^{S_{2ab}}_{S_{ab}S₂} is multiplicity-free with irreducible constituents labelled by (a, b)-birectangular partitions λ such that λ₁ + ··· + λ_b is even for ν = (2), respectively, odd for ν = (1²).
- There is λ such that λ and λ' are (a, b)-birectangular if and only if a − b | a. In such a case λ is self-conjugate and even.

- If ρ is an irreducible induced-multiplicity-free character of G, then (under mild conditions) $\rho \downarrow_N^G$ is induced-multiplicity-free if and only if there are no constituents χ^{λ} and $\chi^{\lambda'}$ of $\rho \uparrow_G^{S_n}$.
- If ρ = χ^(a^b) ≥ χ^ν, then ρ^{S_{2ab}}_{S_{ab}S₂} is multiplicity-free with irreducible constituents labelled by (a, b)-birectangular partitions λ such that λ₁ + ··· + λ_b is even for ν = (2), respectively, odd for ν = (1²).
- There is λ such that λ and λ' are (a, b)-birectangular if and only if $a b \mid a$. In such a case λ is self-conjugate and even.

Example: Let $G = S_{15} \wr S_2$ and $\rho = \chi^{(5^3)} \wr \chi^{(2)}$. Then $\rho \downarrow_N^G$ is induced-multiplicity-free.

- If ρ is an irreducible induced-multiplicity-free character of G, then (under mild conditions) $\rho \downarrow_N^G$ is induced-multiplicity-free if and only if there are no constituents χ^{λ} and $\chi^{\lambda'}$ of $\rho \uparrow_G^{S_n}$.
- If ρ = χ^(a^b) ≥ χ^ν, then ρ^{S_{2ab}}_{S_{ab}S₂} is multiplicity-free with irreducible constituents labelled by (a, b)-birectangular partitions λ such that λ₁ + ··· + λ_b is even for ν = (2), respectively, odd for ν = (1²).
- There is λ such that λ and λ' are (a, b)-birectangular if and only if $a b \mid a$. In such a case λ is self-conjugate and even.

Example: Let $G = S_{15} \wr S_2$ and $\rho = \chi^{(5^3)} \wr \chi^{(1^2)}$. Then $\rho \downarrow_N^G$ is induced-multiplicity-free.

- If ρ is an irreducible induced-multiplicity-free character of G, then (under mild conditions) $\rho \downarrow_N^G$ is induced-multiplicity-free if and only if there are no constituents χ^{λ} and $\chi^{\lambda'}$ of $\rho \uparrow_G^{S_n}$.
- If ρ = χ^(a^b) ≥ χ^ν, then ρ^{S_{2ab}}_{S_{ab}S₂} is multiplicity-free with irreducible constituents labelled by (a, b)-birectangular partitions λ such that λ₁ + ··· + λ_b is even for ν = (2), respectively, odd for ν = (1²).
- There is λ such that λ and λ' are (a, b)-birectangular if and only if $a b \mid a$. In such a case λ is self-conjugate and even.

Example: Let $G = S_{12} \wr S_2$ and $\rho = \chi^{(4^3)} \wr \chi^{(1^2)}$. Then $\rho \downarrow_N^G$ is induced-multiplicity-free.

- If ρ is an irreducible induced-multiplicity-free character of G, then (under mild conditions) $\rho \downarrow_N^G$ is induced-multiplicity-free if and only if there are no constituents χ^{λ} and $\chi^{\lambda'}$ of $\rho \uparrow_G^{S_n}$.
- If ρ = χ^(a^b) ≥ χ^ν, then ρ^{S_{2ab}}_{S_{ab}S₂} is multiplicity-free with irreducible constituents labelled by (a, b)-birectangular partitions λ such that λ₁ + ··· + λ_b is even for ν = (2), respectively, odd for ν = (1²).
- There is λ such that λ and λ' are (a, b)-birectangular if and only if $a b \mid a$. In such a case λ is self-conjugate and even.

Example: Let $G = S_{12} \wr S_2$ and $\rho = \chi^{(4^3)} \wr \chi^{(2)}$. Then $\rho \downarrow_N^G$ is not induced-multiplicity-free.

Introduction

2 Representation theory of symmetric groups in characteristic 0

3 Necessary conditions for multiplicity-free subgroups

4 Combinatorics for index two subgroups

5 Main results

Suppose that $n \ge 66$. Multiplicity-free subgroups of S_n are given by certain subgroups of index 1, 2 and 4 of

- $S_k \times L$ where L is one of $P\Gamma L_2(\mathbb{F}_8) \leq S_9$, $ASL_3(\mathbb{F}_2) \leq S_8$, $PGL_2(\mathbb{F}_5) \leq S_6$ and $AGL_1(\mathbb{F}_5) \leq S_5$,

where $k, l \ge 0, m \ge 2$ and $h \ge 3$.

Suppose that $n \ge 66$. Multiplicity-free subgroups of S_n are given by certain subgroups of index 1, 2 and 4 of

- $S_k \times L$ where L is one of $P\Gamma L_2(\mathbb{F}_8) \leq S_9$, $ASL_3(\mathbb{F}_2) \leq S_8$, $PGL_2(\mathbb{F}_5) \leq S_6$ and $AGL_1(\mathbb{F}_5) \leq S_5$,

where $k, l \ge 0, m \ge 2$ and $h \ge 3$.

The trivial characters of groups in (2), (3) and (4) are not induced-multiplicity-free, provided $k \ge 2$.

Pavel Turek (Royal Holloway) Multiplicity-free induced characters of S_n

Let $n \ge 66$. A subgroup $G \le S_n$ is multiplicity-free if and only if it belongs to the list (throughout $k, l \ge 1, m \ge 2$ and $h \ge 3$):

- $\bigcirc S_n$ and A_n ,
- 2 $S_k \times S_l$, $(S_k \times S_l) \cap A_{k+l}$ and $A_k \times S_l$ with $k \neq 2$ and $A_k \times A_l$ with $k, l \neq 2$,
- 3 $S_k \times S_m \wr S_2$ and for $k \notin \{2m 3, 2m 2, 2m 1, 2m\}$ also groups $(S_k \times S_m \wr S_2) \cap A_{k+2m}$ and $T_{k,m,2}$,
- $S_m \wr S_2, (S_m \wr S_2) \cap A_{2m}, A_m \wr S_2 \text{ and } T_{m,2},$

- **3** $S_k \times L, A_k \times L$ and $(S_k \times L) \cap A_n$ where L is one of PFL(2, 8), ASL(3, 2), PGL(2, 5) and AGL(1, 5),
- \bigcirc $A_m \wr S_2$ with n = 2m + 1 provided *m* is a square.

< □ > < □ > < □ > < □ > < □ > < □ >

Let $n \ge 66$. A subgroup $G \le S_n$ is multiplicity-free if and only if it belongs to the list (throughout $k, l \ge 1, m \ge 2$ and $h \ge 3$):

- $\bigcirc S_n$ and A_n ,
- 2 $S_k \times S_l$, $(S_k \times S_l) \cap A_{k+l}$ and $A_k \times S_l$ with $k \neq 2$ and $A_k \times A_l$ with $k, l \neq 2$,
- 3 $S_k \times S_m \wr S_2$ and for $k \notin \{2m 3, 2m 2, 2m 1, 2m\}$ also groups $(S_k \times S_m \wr S_2) \cap A_{k+2m}$ and $T_{k,m,2}$,

- **3** $S_k \times L, A_k \times L$ and $(S_k \times L) \cap A_n$ where L is one of PFL(2, 8), ASL(3, 2), PGL(2, 5) and AGL(1, 5),

< □ > < □ > < □ > < □ > < □ > < □ >

э

Let $m \ge 37$. The elementary irreducible induced-multiplicity-free characters of $G = (S_m \wr S_2) \cap A_{2m}$ are the irreducible constituents of $(\chi^{\mu} \wr \chi^{\nu}) \downarrow_G^{S_m \wr S_2}$ with: **a** μ of the form (a^b) such that $a - b \nmid a$ or $\nu = (1^2)$; **b** μ of the form (a + 1, b) with b > a + 1; **a** μ of the form $(a + 1, a^{b-1}), (a^b, 1)$ or $(a^{b-1}, a - 1)$ with a > b + 2and $a - b \nmid a$; **b** μ of the form $((2b)^{b-1}, 2b - 1), (2b + 1, (2b)^{b-1})$ or

- μ of the form $((2b)^{b-1}, 2b-1), (2b+1, (2b)^{b-1})$ or $(3b+1, (3b)^{2b-1});$
- μ of the form $(a^{a-1}, a-1)$ provided *m* is even.

・ロト ・ 同ト ・ ヨト ・ ヨト

Let $m \ge 37$. The elementary irreducible induced-multiplicity-free characters of $G = (S_m \wr S_2) \cap A_{2m}$ are the irreducible constituents of $(\chi^{\mu} \wr \chi^{\nu}) \mid_{C}^{S_m \wr S_2}$ with: • μ of the form (a^b) such that $a - b \nmid a$ or $\nu = (1^2)$; 2 μ of the form (a + 1, b) with b > a + 1; **3** μ of the form $(a + 1, a^{b-1}), (a^{b}, 1)$ or $(a^{b-1}, a - 1)$ with a > b + 2and $a - b \nmid a$; **9** μ of the form $((2b)^{b-1}, 2b-1), (2b+1, (2b)^{b-1})$ or $(3b+1, (3b)^{2b-1});$

• μ of the form $(a^{a-1}, a-1)$ provided *m* is even.

・ロト ・ 同ト ・ ヨト ・ ヨト

Let $m \ge 37$. The elementary irreducible induced-multiplicity-free characters of $G = (S_m \wr S_2) \cap A_{2m}$ are the irreducible constituents of $(\chi^{\mu} \wr \chi^{\nu}) \downarrow_G^{S_m \wr S_2}$ with:

- μ of the form (a^b) such that $a b \nmid a$ or $\nu = (1^2)$;
- 2 μ of the form (a + 1, b) with b > a + 1;
- μ of the form $(a + 1, a^{b-1}), (a^b, 1)$ or $(a^{b-1}, a 1)$ with a > b + 2and $a - b \nmid a$;
- μ of the form $((2b)^{b-1}, 2b-1), (2b+1, (2b)^{b-1})$ or $(3b+1, (3b)^{2b-1});$
- μ of the form $(a^{a-1}, a-1)$ provided *m* is even.

< □ > < □ > < □ > < □ > < □ > < □ >