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1. G-posets and their representations

e G: finite group.
e k: commutative ring.
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automorphisms, i.e., if x <y then gx < gy. For x € X, G, denotes the
stabilizer.
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1. G-posets and their representations

e G: finite group.
e k: commutative ring.

Definition A G-poset X is a poset (X, <) on which G acts via poset
automorphisms, i.e., if x <y then gx < gy. For x € X, G, denotes the
stabilizer.

Example The set of subgroups of G together with the conjugation
action of G.
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If X is a G-poset, one can form a category %' (X) as follows:
e Objects: the elements of X.

e Homy(x)(x,y) :={g € G[x< gy}

e Composition: X%y%z = x-&"s;

(x < gy, y < hz= x < gy <g(hz) = (gh)2).

o id, = x—1ox.
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If X is a G-poset, one can form a category %' (X) as follows:

e Objects: the elements of X.

e Homy(x)(x,y) :={g € G[x< gy}

e Composition: X%y%z = x-&"s 7

(x < gy, y < hz= x < gy <g(hz) = (gh)2).

o id, = x—1ox.

Note that Endeg(x)(x) = Gy, the stabilizer of x in G, with the opposite

multiplication (g, h) — hg). In particular any endomorphism is an
isomorphism.
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Definition A representation of a G—poset X over k is a functor
F: €(X)°P — xmod. Representations of X over k form an abelian
category Px(X). Note that for any g € G and x < y in X one has
commutative diagrams

gy —& 5y Fgy)<EX—F(y)
1 1 Fy rey ry
gx —8 § « F(gx)&l-_(x)

Moreover, F(x) is a kGxy-module.
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Example Let X be the set of subgroups of G endowed with
G-conjugation and let V € (cMod. One can form the representation
H— VH .= {veV|hv=vforall he€ H}. This defines a functor

1: kaOd — Pk(X) .
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Example Let X be the set of subgroups of G endowed with
G-conjugation and let V € (cMod. One can form the representation
H— VH .= {veV|hv=vforall he€ H}. This defines a functor

1: kaOd — Pk(X) .

The restriction maps are inclusions and the conjugation map ¢, 4 is the
application of g on V#.
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Definition Let X be a G-poset. The incidence algebra Ag(X) = A(X)
over k is defined as the free k-module with basis elements

(x,g,y)  (where x < gy)
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Definition Let X be a G-poset. The incidence algebra Ag(X) = A(X)
over k is defined as the free k-module with basis elements

(x,g,y)  (where x < gy)

and multiplication defined by

x,gh,z) ify =y
(x,8,y)- (Y, hz):= ( ) . .
0 if y £y’
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Definition Let X be a G-poset. The incidence algebra Ag(X) = A(X)
over k is defined as the free k-module with basis elements

(x,g,y)  (where x < gy)

and multiplication defined by

h,z) ify =y,
. g, . I7h, = (X7g 9
(x.8,y)- (v, h,2) {0 iy 4y

This is also the category algebra k%€'(X)°P. If X is finite, A(X) has the

identity element
agx) = D e
xeX

where e, = (x, 1, x) = idy.
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Proposition [/f X is a finite G-poset then one has a category equivalence
Pk(X) = Ak(X)mod .

The simple Ax(X)-modules are parametrized by G-orbits of pairs (x,[V]),
where x € G and V is a simple kGx-module.
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Theorem (Linckelmann 2004) If k is a field and X is a finite G-poset
then the incidence algebra Ax(X) is quasi-hereditary.
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where x € G and V is a simple kGx-module.

Theorem (Linckelmann 2004) If k is a field and X is a finite G-poset
then the incidence algebra Ax(X) is quasi-hereditary.

Consequence: The category 4,(x)ymod has many special properties. For
instance, every finitely generated Ax(X)-module has a finite projective
resolution.
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Proposition [/f X is a finite G-poset then one has a category equivalence
Pk(X) = Ak(X)mod .

The simple Ax(X)-modules are parametrized by G-orbits of pairs (x,[V]),
where x € G and V is a simple kGx-module.

Theorem (Linckelmann 2004) If k is a field and X is a finite G-poset
then the incidence algebra Ax(X) is quasi-hereditary.

Consequence: The category 4,(x)ymod has many special properties. For
instance, every finitely generated Ax(X)-module has a finite projective
resolution.

Proposition (B.-Monteiro 2024)  One can explicitly determine the
central idempotents of Ax(X) in terms of central idempotents of the
various group algebras kGy.
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2. The canonical Brauer induction formula

In this section, kK = C.

R(G) := ring of virtual characters of G = Grothendieck ring of cgmod.
G := Hom(G,C*) C R(G).
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2. The canonical Brauer induction formula

In this section, kK = C.
R(G) := ring of virtual characters of G = Grothendieck ring of cgmod.
G := Hom(G,C*) C R(G).

Theorem (Brauer 1947) For every x € R(G) there exist H; < G,
wi€H;,nje€Z,i=1,...,r, such that

r
X = Z n; - indf,[(go;) .
i=1
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2. The canonical Brauer induction formula

In this section, kK = C.

R(G) := ring of virtual characters of G = Grothendieck ring of cgmod.
G := Hom(G,C*) C R(G).

Theorem (Brauer 1947) For every x € R(G) there exist H; < G,
wi€H;,nje€Z,i=1,...,r, such that
X =>_ni-ind§ (o).
i=1
Consider the set
Me:={(H,p) | H< G,pc H}.

It is a G-poset via (K, 9) < (H,¢) : <= K < H and ¢ = ¢|k, together
with the G-conjugation action (g, (H,¢)) — &(H, ) = (8H, 8p).
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|
Consider the free abelian group R1(G) with basis G\M¢ = {[H, ¢]c}-
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Consider the free abelian group R1(G) with basis G\M¢ = {[H, ¢]c}-
Dress 1971: R, (G) is a commutative ring and there exist natural maps

resg: Ry(G) — Ri(H) forall H<G.
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Dress 1971: R, (G) is a commutative ring and there exist natural maps

resg: Ry(G) — Ri(H) forall H<G.
Brauer's induction theorem says that the map
bg: R+(G) = R(G), [H,¢le — indfi(),

is surjective.
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-
Consider the free abelian group R1(G) with basis G\M¢ = {[H, ¢]c}-
Dress 1971: R, (G) is a commutative ring and there exist natural maps

resg: Ry(G) — Ri(H) forall H<G.
Brauer's induction theorem says that the map
bg: R+(G) = R(G), [H,¢le — indfi(),

is surjective.
Also, the diagram

R.(G)-2¢5R(G)
reSEIJ/ J/resf,

Ry (H)-LHSR(H)

commutes.
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Definition (B. 1990) A canonical Brauer induction formula is a family
of maps ag: R(G) — R4 (G), one for each finite group G, such that
b o ag = idg(g) and ag commutes with restrictions to subgroups.
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Definition (B. 1990) A canonical Brauer induction formula is a family
of maps ag: R(G) — R4 (G), one for each finite group G, such that
b o ag = idg(g) and ag commutes with restrictions to subgroups.

e Snaith 1988: constructed such a map ag (only on R>o(G), not additive).

e B. 1990: Canonical induction formulas are uniquely determined up to a
normalization. The most obvious normalization leads to the canonical
Brauer induction formula, explicitly given by

ac(x) = > (=1)"(xIH,> n)[Hos ¢olc -

(Hop0)<**<(Hpn,n)
modG
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Definition (B. 1990) A canonical Brauer induction formula is a family
of maps ag: R(G) — R4 (G), one for each finite group G, such that

b o ag = idg(g) and ag commutes with restrictions to subgroups.

e Snaith 1988: constructed such a map ag (only on R>o(G), not additive).

e B. 1990: Canonical induction formulas are uniquely determined up to a
normalization. The most obvious normalization leads to the canonical
Brauer induction formula, explicitly given by

ac(x) = > (=1)"(xIH,> n)[Hos ¢olc -

(Ho,0) <+ <(Hn,n)
modG

Thus, if x is afforded by V € ¢cgmod then

X = > (=1)"ind g, [VFeo],

(H07<P0)<"'<(Hn790n)
modG

where V(H:#) .= v € V| hv = p(h)v for all h € H}.
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Definition (B. 1990) A canonical Brauer induction formula is a family
of maps ag: R(G) — R4 (G), one for each finite group G, such that

b o ag = idg(g) and ag commutes with restrictions to subgroups.

e Snaith 1988: constructed such a map ag (only on R>o(G), not additive).

e B. 1990: Canonical induction formulas are uniquely determined up to a
normalization. The most obvious normalization leads to the canonical
Brauer induction formula, explicitly given by

ac(x) = > (=1)"(xIH,> n)[Hos ¢olc -

(Hop0)<**<(Hpn,n)
modG

Thus, if x is afforded by V € ¢cgmod then

X = > (=1)"ind g, [VFeo],

(H07<P0)<"'<(Hn790n)
modG

where V(H:#) .= v € V| hv = p(h)v for all h € H}.

e Symonds 1991: geometric interpretation of this formula.
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Definition (B. 2001) The category cgmon of finite G-line bundles over
C is defined as follows:
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1-dimensional C-subspaces of M that are permuted by G and satisfy
M=Li® - &L,
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1-dimensional C-subspaces of M that are permuted by G and satisfy
M=Li @ DL,

Every L; has a stabilizing pair (H;, ;) € Mg. For (H,p) € Mg set

M((H,¢)= & L and MHD = H ;.

Lie¥ Lie?
(Hispi)=(H,») (Hispi)>(H,»)

R. Boltje (UC Santa Cruz) G-posets June 5, 2024 12/17



Definition (B. 2001) The category cgmon of finite G-line bundles over
C is defined as follows:

e Objects: Pairs (M,.Z) with M € cgmod and £ = {L1,...,L,} a set of
1-dimensional C-subspaces of M that are permuted by G and satisfy
M=Li®- - &L,

Every L; has a stabilizing pair (H;, ;) € Mg. For (H,p) € Mg set

M((H,¢)= & L and MHD = H ;.

Lie¥ Lie?
(Hispi)=(H,») (Hispi)>(H,»)

e Hom . mon(M, N) is the set of f € Homcg(M, N) satisfying

F(MHLDY ¢ NHL) - for all (H, p) € Mg .
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Definition (B. 2001) The category cgmon of finite G-line bundles over
C is defined as follows:

e Objects: Pairs (M,.Z) with M € cgmod and £ = {L1,...,L,} a set of
1-dimensional C-subspaces of M that are permuted by G and satisfy
M=Li®- - &L,

Every L; has a stabilizing pair (H;, ;) € Mg. For (H,p) € Mg set

M((H,¢)= & L and MHD = H ;.

Lie¥ Lie?
(Hispi)=(H,») (Hispi)>(H,»)

e Hom . mon(M, N) is the set of f € Homcg(M, N) satisfying

F(MHLDY ¢ NHL) - for all (H, p) € Mg .

cgmon is a C-linear additive category, but not abelian.
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Proposition (B. 2001) Every indecomposable object in cgmon is of the
form Ind§(C,) = CG ®cy C,, for some (H,p) € Mg, uniquely
determined up to conjugation, and the Grothendieck group of cgmon is
R:(G).
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Proposition (B. 2001) Every indecomposable object in cgmon is of the
form Ind§(C,) = CG ®cy C,, for some (H,p) € Mg, uniquely
determined up to conjugation, and the Grothendieck group of cgmon is
R (G). Moreover, the forgetful functor cemon — cgmod induces the
map bg: Ry (G) — R(G), [H,¢]c — ind§&(y).
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Proposition (B. 2001) Every indecomposable object in cgmon is of the
form Ind§(C,) = CG ®cy C,, for some (H,p) € Mg, uniquely
determined up to conjugation, and the Grothendieck group of cgmon is
R (G). Moreover, the forgetful functor cemon — cgmod induces the
map bg: Ry (G) — R(G), [H,¢]c — ind§&(y).

Definition The functors Z: ¢cgmod — P(Mg) and
J: cgmon — P(Mg) are defined by

(V) = (V(H’¢)> and J(M):= (M((H#’)))

(H.p)eEMg (Hp)eMeg
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Proposition (B. 2001) Every indecomposable object in cgmon is of the
form Ind§(C,) = CG ®cy C,, for some (H,p) € Mg, uniquely
determined up to conjugation, and the Grothendieck group of cgmon is
R (G). Moreover, the forgetful functor cemon — cgmod induces the
map bg: Ry (G) — R(G), [H,¢]c — ind§&(y).

Definition The functors Z: ¢cgmod — P(Mg) and
J: cgmon — P(Mg) are defined by

(V) = (V(H"p)> and J(M):= (M((va)))

(H.p)eEMg (Hp)eMeg

Proposition (B. 2001) Z and J are fully faithful embeddings of ¢gmod
and cgmon into the full subcategory P'(Mg¢) of P(Mg) consisting of
those functors F, such that h € H acts on F(H, ) via multiplication with

@(h).
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Proposition (B. 2001) Every indecomposable object in cgmon is of the
form Ind§(C,) = CG ®cy C,, for some (H,p) € Mg, uniquely
determined up to conjugation, and the Grothendieck group of cgmon is
R (G). Moreover, the forgetful functor cemon — cgmod induces the
map bg: Ry (G) — R(G), [H,¢]c — ind§&(y).

Definition The functors Z: ¢cgmod — P(Mg) and
J: cgmon — P(Mg) are defined by

(V) = (V(H"p)> and J(M):= (M((va)))

(H.p)eEMg (Hp)eMeg

Proposition (B. 2001) Z and J are fully faithful embeddings of ¢gmod
and cgmon into the full subcategory P'(Mg¢) of P(Mg) consisting of
those functors F, such that h € H acts on F(H, ) via multiplication with
©(h). Moreover, every object in J(cgmon) is projective in P'(Mg).
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3. Categorification of the canonical Brauer induction formula

Again, k = C throughout this section.
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Again, k = C throughout this section.

Theorem (B. 2001) Let V € cgmod. Then Z(V) has a finite projective
resolution in P'(Mg) in terms of objects from J(cgmon).
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3. Categorification of the canonical Brauer induction formula
Again, k = C throughout this section.

Theorem (B. 2001) Let V € cgmod. Then Z(V) has a finite projective
resolution in P'(Mg) in terms of objects from J(cgmon).

Moreover, if J(M.,) is this projective resolution of Z(V') then
ac([V]) = Xiso(=1)[Mj] in Ry(G). In particular, one has a
commutative diagram

cemod—>KP(cgmon)

[—]j J[—]

R(6)—265R. (G)
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3. Categorification of the canonical Brauer induction formula

Again, k = C throughout this section.

Theorem (B. 2001) Let V € cgmod. Then Z(V) has a finite projective
resolution in P'(Mg) in terms of objects from J(cgmon).

Moreover, if J(M.,) is this projective resolution of Z(V') then
ac([V]) = Xiso(=1)[Mj] in Ry(G). In particular, one has a
commutative diagram

cemod—>KP(cgmon)
[—]J J/[—]
R(G)—25>R.(6)

Remark For given V € ¢gmod one can find an M, of length < longest
strictly ascending chain in the set of subspaces V(H:¥) =£ 0.

R. Boltje (UC Santa Cruz) G-posets June 5, 2024 14 /17



Question: Are the objects of J(cgmon) also projective in P(Mg)?
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Question: Are the objects of J(cgmon) also projective in P(Mg)?

Set

€= Z ’ZSO : 790)ﬂh7(H790))€A(MG)'

790)€M heH

Then ¢ is an idempotent and P’/(M) corresponds under the equivalence
P(Mg) = ame)ymod to the full subcategory of 4(aq)mod consisting of
those modules on which € acts as identity.
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Question: Are the objects of J(cgmon) also projective in P(Mg)?

Set

= Y fz (M, ), h, (H,9)) € AMo).

(Ho)em ' heH

Then ¢ is an idempotent and P’/(M) corresponds under the equivalence
P(Mg) = ame)ymod to the full subcategory of 4(aq)mod consisting of
those modules on which € acts as identity.

Proposition (B.-Monteiro 2024)  One has A(Mg)e C eA(Mg). In
particular, A(Mg)e = eA(M¢)e and ac = eae for all a € A(Mg).
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Question: Are the objects of J(cgmon) also projective in P(Mg)?

Set

= Y fz (M, ), h, (H,9)) € AMo).

(Ho)em ' heH

Then ¢ is an idempotent and P’/(M) corresponds under the equivalence
P(Mg) = ame)ymod to the full subcategory of 4(aq)mod consisting of
those modules on which € acts as identity.

Proposition (B.-Monteiro 2024)  One has A(Mg)e C eA(Mg). In
particular, A(Mg)e = eA(M¢)e and ac = eae for all a € A(Mg).

As a consequence, left A(Mg)-modules on which € acts as identity are
literally the same thing as left e A(M ¢g)e-modules. Moreover, projective
objects of P'(Mg) are also projective in P(Mg).
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Proposition (B.-Monteiro 2024) The idempotent ¢ satisfies a property
that ensures that the algebra e A(Mg)e is again quasi-hereditary.
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Proposition (B.-Monteiro 2024) The idempotent ¢ satisfies a property
that ensures that the algebra e A(Mg)e is again quasi-hereditary.

Future work (in progress with Nariel Monteiro) Let V € cgmod and let
P, be a projective resolution of Z(V) in P(Mg). Applying any functor
P(Mg) — A (where A is abelian) to P, and then taking homology, will
result in an invariant of V.

Question Does one obtain this way new interesting invariants of V7

Example For F € P(Mg) and fixed (H,¢) € Mg consider the functor

Fes F(Hoo)) Y (” FUF(H, @) € cay, mod.
(<)
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Thank You
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