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Quantisation and chiralisation

We work over C.

General idea

Study noncommutative objects (algebras, vertex algebras) by looking at
associated geometric objects (schemes, jet schemes).

Quantization
= X: affine Poisson variety, i.e. Poisson bracket {e, e} on C[X].
= A quantization of X is a noncommutative filtered algebra .7 such
that gr &/ = C[X] and gr[e, o] = {e, e}.
Chiralisation %

= Jet scheme J, X: differential scheme that represents the functor
R — X(RI[[]]).

= A chiralisation of X is a noncommutative vertex algebra 7 such that
gr vV = ClJX].
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Big picture of finite W-algebras

G: simple algebraic group over C; g: its simple Lie algebra.

= 7/(g): the universal enveloping algebra of g,

= C[g*]: polynomial functions on g*.
f € g: nilpotent element.

= (g, f): the finite W-algebra associated to (g, f),

= C[S¢]: polynomial functions on the Slodowy slice S¢.

gr .
%(g) ——— Clo’]

Associative | e N | - Poisson

algebras amiltonian reauction amiltonian reauction algebras
%(9,f) ——— C[5]
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= (Morgan 2015) “Stage conditions” and first conjectures for finite
W-algebras.

= (Kamnitzer-Pham-Weekes 2022) Some particular cases.

= (Fehily, Fasquel-Nakatsuka 2023, Butson 2024,
Creutzig-Fasquel-Linshaw-Nakatsuka 2024) Inverse reduction
between affine W-algebras.

Today
Positive answers to these questions (Genra-J. arXiv:2212.06022).
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Motivation: affine W-algebras %

ko : g — g*: Killing form, x = kkg for k € C.

Kac-Moody algebra

7" (9)
Poi
Vertex ‘ 0|tsson
|lgeb Hamiltonian reduction Hamiltonian reduction ~ VEItex
e algebras
V(9. f)
’ — 5 C[JaS
Affine W-algebra gr [Joo S7]
Question
/ \ In progress (Genra-J.)
' (97 fl W”(g’ f2)
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Recalls about Slodowy slices

Ko : g — g*: Killing form.

= C[g*] = Symg is a Poisson algebra: {x,y} = [x,y] for x,y € g.
= Jacobson-Morosov Theorem (see Emanuele Di Bella's talk): f is
embedded in a sl,-triple (e, h, f).
= Dynkin grading:
9= @96: g5 = {x € g|[hx]=0x}.
sez

=y = ko(f) is the linear form associated to f.

Definition: Slodowy slice
Sr = ko(f + Kerad(e)) = x + Kerad*(e) affine subspace of g*.

Remark
Transverse slice of Gwyn Bellamy's talk.

Its Poisson structure is induced by Hamiltonian reduction.
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Hamiltonian reduction in a nutshell

The construction

Affine Poisson variety X
Algebraic group action M ~ X . M
Moment map p: X — m* - #{€)/M = Spec (C[X]//) '

Character £ € m*

Poisson structure on the reduction

{F1 mod I, F, mod I} = {Fy, F,} mod |.

Remark
Explicit description would require to compute the ring of invariants

(C[X] //)M: difficult.
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1. Poisson variety g*.

2. Construct some unipotent subgroup M of G such that
g>1 €mC gyo and 2dimm =dim G - f.

3. Moment map: restriction map p: g* — m*, & — .

4. X := X|m is a character of m.

Theorem (Gan-Ginzburg)
The coadjoint action induces an isomorphism M x S¢ = ~1(¥).

Hence:  Sr = u~(x)/M.

Particular case (Kostant)

Assume f is regular, i.e. dense orbit in the nilpotent cone.
Then, M is the unipotent radical in a Borel subgroup of G.
In fact, C[Sf] = C[g*]® (Poisson center).

Example of the particular case
g= 5[,, and f = E2,1 + E3’2 + -4 En7,,_1.
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= (Marsden, Misiolek, Ortega, Perlmutter and Rati 2007) General
framework for reduction by stages.
= fi,f, € g two nilpotent elements.
= Slodowy slices S; := S¢ and linear form x; := ko(f;).
= Unipotent groups M;, moment maps p; : g* — m;" and characters ;;
such that S; = ;7 (%;)/ M.
Theorem (Genra-J. 2022)

Assume the following conditions:

My = My x My, f — fi,mg Qg(()l) fi EG(E%.

)

Then there is an induced Hamiltonian action My ~ S; =% mg*such that
110~ (Xo)/ Mo = 11271 (X2)/ Mo, where Xg = Xa|m,-

Key point
There is an isomorphism M; x 071 (%X,) = 121 (X,).

Remark
The conditions imply G-, C G - f,. 10
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A family of examples: hook type nilpotent elements

= g := sl,: nilpotent orbits indexed by partitions of n.

= For 0 < ¢ < n, the nilpotent orbit O, corresponds to the partition

(6,177°).
Proposition (Genra-J. 2022)
Pick two nilpotent elements f; € Oy, for {1 < (5.
n Then the reduction by stages theorem holds:
: Clg”]
£+1 / \
g |le—1|---| 2 1 C[Sl] 7 C[52]

Other examples in classical and exceptional types.
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2002)

= (PBW Theorem) % (g) quantises C[g*]:
gr % (g) = C[g*] as Poisson algebras.

Definition: finite W-algebra (Premet)
U(g,f) == (%(g)/1)*™ (quantum Hamiltonian reduction),

where [ is the left ideal spanned by a — x(a), a € m.

= There is a natural filtration on % (g, f) (Kazhdan filtration).
= gr (g, f) is Poisson.

Theorem (Gan-Ginzburg)
(g, f) quantises C[Sf]:  gr# (g, f) = C[Sf].
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Reduction by stages

Theorem (Genra-J. 2022)
Assume the following conditions:

My = My x My, f2—f1-,ﬂ10§9(()1)7 7(169(_2%-

Then, one can take the reduction of % (g, f1): (%(g, ﬂ)/lo)ad(mO),
where y is the left ideal of % (g, f1) spanned by a — x2(a), for a € mg,
and there is an algebra isomorphism

(% (9, ) /1) ™ =5 % (9. ).
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Row elimination in type A

= g := gl, (reductive is ok!).

= f, associated to partition (A1 > -+ > A, Ag).
= ) partition of ng < n: fy € gl,,, associated to partition A,.
= f; associated to partition (A, ..., A, 170).

Theorem (Premet)
There is a Hamiltonian action GL,, ~ Sg gl

*
np °

Pick Mo unipotent subgroup of GL,, corresponding to fy € gl,, .
Theorem (J.)
1. The Hamiltonian reduction of Sy with respect to the action of My is
S¢,.

2. One gets a (dominant) Poisson map: Sp—— S5

Remark
Reinterpretation of the row elimination rule of Kraft and Procesi.

Rule used to classify minimal degenerations mentioned in Gwyn's talk.
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Quantisation and chiralisation

= g=gl,
= f, associated to partition (). ..., Ay Ag)-
= ) partition of ny < n: fy € gl associated to partition A,.
= f; associated to partition (A, ..., A, 170).
Theorem (J.)

1. % (gl,, 1) is the Hamiltonian reduction of % (gl,,, f2).
2. There is an embedding % (gl,,,, fo)—— % (gl,, f2).

Conjecture %

1. #%(gl,, f) is the Hamiltonian reduction of #"(gl,, f2).
2. There is an embedding W”/(g[no, fo)——#"(gl,, f).
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Thank you for your attention!
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