Chiralisation of reduction by stages

Thibault Juillard (project with Naoki Genra)
June 6, 2024 - Groups and their actions, Levico Terme
Université Paris-Saclay, Institut de Mathématiques d'Orsay

Introduction

Reduction by stages for Slodowy slices

Reduction by stages for finite W-algebra

Quantisation and chiralisation of Kraft and Procesi's Theorems

Introduction

Quantisation and chiralisation

We work over C.

Quantisation and chiralisation

We work over C.
General idea

Quantisation and chiralisation

We work over C.
General idea
Study noncommutative objects (algebras, vertex algebras)

Quantisation and chiralisation

We work over C.

General idea

Study noncommutative objects (algebras, vertex algebras) by looking at associated geometric objects (schemes, jet schemes).

Quantisation and chiralisation

We work over C.

General idea

Study noncommutative objects (algebras, vertex algebras) by looking at associated geometric objects (schemes, jet schemes).

Quantization

Quantisation and chiralisation

We work over C.

General idea

Study noncommutative objects (algebras, vertex algebras) by looking at associated geometric objects (schemes, jet schemes).

Quantization

- X : affine Poisson variety, i.e. Poisson bracket $\{\bullet, \bullet\}$ on $\mathbf{C}[X]$.

Quantisation and chiralisation

We work over C.

General idea

Study noncommutative objects (algebras, vertex algebras) by looking at associated geometric objects (schemes, jet schemes).

Quantization

- X : affine Poisson variety, i.e. Poisson bracket $\{\bullet, \bullet\}$ on $\mathbf{C}[X]$.
- A quantization of X is a noncommutative filtered algebra \mathscr{A} such that $\operatorname{gr} \mathscr{A} \cong \mathbf{C}[X]$ and $\operatorname{gr}[\bullet, \bullet]=\{\bullet, \bullet\}$.

Quantisation and chiralisation

We work over C.

General idea

Study noncommutative objects (algebras, vertex algebras) by looking at associated geometric objects (schemes, jet schemes).

Quantization

- X : affine Poisson variety, i.e. Poisson bracket $\{\bullet, \bullet\}$ on $\mathbf{C}[X]$.
- A quantization of X is a noncommutative filtered algebra \mathscr{A} such that $\operatorname{gr} \mathscr{A} \cong \mathbf{C}[X]$ and $\operatorname{gr}[\bullet, \bullet]=\{\bullet, \bullet\}$.

Chiralisation \star

Quantisation and chiralisation

We work over C.

General idea

Study noncommutative objects (algebras, vertex algebras) by looking at associated geometric objects (schemes, jet schemes).

Quantization

- X : affine Poisson variety, i.e. Poisson bracket $\{\bullet, \bullet\}$ on $\mathbf{C}[X]$.
- A quantization of X is a noncommutative filtered algebra \mathscr{A} such that $\operatorname{gr} \mathscr{A} \cong \mathbf{C}[X]$ and $\operatorname{gr}[\bullet, \bullet]=\{\bullet, \bullet\}$.

Chiralisation \star

- Jet scheme $J_{\infty} X$: differential scheme that represents the functor $R \mapsto X(R[[t]])$.

Quantisation and chiralisation

We work over C.

General idea

Study noncommutative objects (algebras, vertex algebras) by looking at associated geometric objects (schemes, jet schemes).

Quantization

- X : affine Poisson variety, i.e. Poisson bracket $\{\bullet, \bullet\}$ on $\mathbf{C}[X]$.
- A quantization of X is a noncommutative filtered algebra \mathscr{A} such that $\operatorname{gr} \mathscr{A} \cong \mathbf{C}[X]$ and $\operatorname{gr}[\bullet, \bullet]=\{\bullet, \bullet\}$.

Chiralisation \star

- Jet scheme $J_{\infty} X$: differential scheme that represents the functor $R \mapsto X(R[[t]])$.
- A chiralisation of X is a noncommutative vertex algebra \mathscr{V} such that $\operatorname{gr} \mathscr{V} \cong \mathbf{C}\left[J_{\infty} X\right]$.

Big picture of finite W-algebras

Big picture of finite W -algebras

G : simple algebraic group over $\mathbf{C} ; \mathfrak{g}$: its simple Lie algebra.

Big picture of finite W -algebras

G : simple algebraic group over $\mathbf{C} ; \mathfrak{g}$: its simple Lie algebra.

- $\mathscr{U}(\mathfrak{g})$: the universal enveloping algebra of \mathfrak{g},

Big picture of finite W -algebras

G : simple algebraic group over $\mathbf{C} ; \mathfrak{g}$: its simple Lie algebra.

- $\mathscr{U}(\mathfrak{g})$: the universal enveloping algebra of \mathfrak{g},
- C $\left.\mathfrak{g}^{*}\right]$: polynomial functions on \mathfrak{g}^{*}.

Big picture of finite W -algebras

G : simple algebraic group over $\mathbf{C} ; \mathfrak{g}$: its simple Lie algebra.

- $\mathscr{U}(\mathfrak{g})$: the universal enveloping algebra of \mathfrak{g},
- C $\left.\mathfrak{g}^{*}\right]$: polynomial functions on \mathfrak{g}^{*}.
$f \in \mathfrak{g}$: nilpotent element.

Big picture of finite W -algebras

G : simple algebraic group over $\mathbf{C} ; \mathfrak{g}$: its simple Lie algebra.

- $\mathscr{U}(\mathfrak{g})$: the universal enveloping algebra of \mathfrak{g},
- C[$\left.\mathfrak{g}^{*}\right]$: polynomial functions on \mathfrak{g}^{*}.
$f \in \mathfrak{g}$: nilpotent element.
- $\mathscr{U}(\mathfrak{g}, f)$: the finite W-algebra associated to (\mathfrak{g}, f),

Big picture of finite W -algebras

G : simple algebraic group over $\mathbf{C} ; \mathfrak{g}$: its simple Lie algebra.

- $\mathscr{U}(\mathfrak{g})$: the universal enveloping algebra of \mathfrak{g},
- C $\left[\mathfrak{g}^{*}\right]$: polynomial functions on \mathfrak{g}^{*}.
$f \in \mathfrak{g}$: nilpotent element.
- $\mathscr{U}(\mathfrak{g}, f)$: the finite W-algebra associated to (\mathfrak{g}, f),
- $\mathrm{C}\left[S_{f}\right]$: polynomial functions on the Slodowy slice S_{f}.

Big picture of finite W -algebras

G : simple algebraic group over $\mathbf{C} ; \mathfrak{g}$: its simple Lie algebra.

- $\mathscr{U}(\mathfrak{g})$: the universal enveloping algebra of \mathfrak{g},
- C $\left[\mathfrak{g}^{*}\right]$: polynomial functions on \mathfrak{g}^{*}.
$f \in \mathfrak{g}$: nilpotent element.
- $\mathscr{U}(\mathfrak{g}, f)$: the finite W-algebra associated to (\mathfrak{g}, f),
- $\mathrm{C}\left[S_{f}\right]$: polynomial functions on the Slodowy slice S_{f}.

Problem of reduction by stages

Problem of reduction by stages

Questions
$f_{1}, f_{2} \in \mathfrak{g}$ are two nilpotent elements.

Problem of reduction by stages

Questions
 $f_{1}, f_{2} \in \mathfrak{g}$ are two nilpotent elements.

Problem of reduction by stages

Questions

$f_{1}, f_{2} \in \mathfrak{g}$ are two nilpotent elements.

Problem of reduction by stages

Questions

$f_{1}, f_{2} \in \mathfrak{g}$ are two nilpotent elements.

- (Morgan 2015) "Stage conditions" and first conjectures for finite W-algebras.

Problem of reduction by stages

Questions

$f_{1}, f_{2} \in \mathfrak{g}$ are two nilpotent elements.

- (Morgan 2015) "Stage conditions" and first conjectures for finite W-algebras.
- (Kamnitzer-Pham-Weekes 2022) Some particular cases.

Problem of reduction by stages

Questions

$f_{1}, f_{2} \in \mathfrak{g}$ are two nilpotent elements.

- (Morgan 2015) "Stage conditions" and first conjectures for finite W-algebras.
- (Kamnitzer-Pham-Weekes 2022) Some particular cases.
- (Fehily, Fasquel-Nakatsuka 2023, Butson 2024, Creutzig-Fasquel-Linshaw-Nakatsuka 2024) Inverse reduction between affine W-algebras.

Problem of reduction by stages

Questions

$f_{1}, f_{2} \in \mathfrak{g}$ are two nilpotent elements.

- (Morgan 2015) "Stage conditions" and first conjectures for finite W-algebras.
- (Kamnitzer-Pham-Weekes 2022) Some particular cases.
- (Fehily, Fasquel-Nakatsuka 2023, Butson 2024, Creutzig-Fasquel-Linshaw-Nakatsuka 2024) Inverse reduction between affine W-algebras.

Today

Problem of reduction by stages

Questions

$f_{1}, f_{2} \in \mathfrak{g}$ are two nilpotent elements.

- (Morgan 2015) "Stage conditions" and first conjectures for finite W-algebras.
- (Kamnitzer-Pham-Weekes 2022) Some particular cases.
- (Fehily, Fasquel-Nakatsuka 2023, Butson 2024, Creutzig-Fasquel-Linshaw-Nakatsuka 2024) Inverse reduction between affine W-algebras.

Today

Positive answers to these questions (Genra-J. arXiv:2212.06022).

Motivation: affine W-algebras *

Motivation: affine W-algebras \star

$\kappa_{0}: \mathfrak{g} \xrightarrow{\sim} \mathfrak{g}^{*}:$ Killing form, $\kappa=k \kappa_{0}$ for $k \in \mathbf{C}$.

Motivation: affine \mathbf{W}-algebras \star

$\kappa_{0}: \mathfrak{g} \xrightarrow{\sim} \mathfrak{g}^{*}:$ Killing form, $\kappa=k \kappa_{0}$ for $k \in \mathbf{C}$.

Motivation: affine \mathbf{W}-algebras \star

$\kappa_{0}: \mathfrak{g} \xrightarrow{\sim} \mathfrak{g}^{*}:$ Killing form, $\kappa=k \kappa_{0}$ for $k \in \mathbf{C}$.

Question

Motivation: affine \mathbf{W}-algebras \star

$\kappa_{0}: \mathfrak{g} \xrightarrow{\sim} \mathfrak{g}^{*}:$ Killing form, $\kappa=k \kappa_{0}$ for $k \in \mathbf{C}$.

Question

$$
\mathscr{W}^{\kappa}\left(\mathfrak{g}, f_{1}\right) \cdots \mathscr{W}^{\kappa}\left(\mathfrak{g}, f_{2}\right) \quad \text { In progress (Genra-J.) }
$$

Reduction by stages for Slodowy slices

Recalls about Slodowy slices

Recalls about Slodowy slices

$\kappa_{0}: \mathfrak{g} \xrightarrow{\sim} \mathfrak{g}^{*}:$ Killing form.

Recalls about Slodowy slices

$\kappa_{0}: \mathfrak{g} \xrightarrow{\sim} \mathfrak{g}^{*}:$ Killing form.

- $\mathrm{C}\left[\mathfrak{g}^{*}\right]=\operatorname{Sym} \mathfrak{g}$ is a Poisson algebra:

Recalls about Slodowy slices

$\kappa_{0}: \mathfrak{g} \xrightarrow{\sim} \mathfrak{g}^{*}:$ Killing form.

- $\mathbf{C}\left[\mathfrak{g}^{*}\right]=$ Sym \mathfrak{g} is a Poisson algebra: $\{x, y\}=[x, y]$ for $x, y \in \mathfrak{g}$.

Recalls about Slodowy slices

$\kappa_{0}: \mathfrak{g} \xrightarrow{\sim} \mathfrak{g}^{*}:$ Killing form.

- $\mathbf{C}\left[\mathfrak{g}^{*}\right]=$ Sym \mathfrak{g} is a Poisson algebra: $\{x, y\}=[x, y]$ for $x, y \in \mathfrak{g}$.
- Jacobson-Morosov Theorem (see Emanuele Di Bella's talk): f is embedded in a $\mathfrak{s l}_{2}$-triple (e, h, f).

Recalls about Slodowy slices

$\kappa_{0}: \mathfrak{g} \xrightarrow{\sim} \mathfrak{g}^{*}:$ Killing form.

- $\mathbf{C}\left[\mathfrak{g}^{*}\right]=\operatorname{Sym} \mathfrak{g}$ is a Poisson algebra: $\{x, y\}=[x, y]$ for $x, y \in \mathfrak{g}$.
- Jacobson-Morosov Theorem (see Emanuele Di Bella's talk): f is embedded in a $\mathfrak{s l}_{2}$-triple (e, h, f).
- Dynkin grading:

$$
\mathfrak{g}=\bigoplus_{\delta \in \mathbf{Z}} \mathfrak{g}_{\delta}, \quad \mathfrak{g}_{\delta}:=\{x \in \mathfrak{g} \mid[h, x]=\delta x\} .
$$

Recalls about Slodowy slices

$\kappa_{0}: \mathfrak{g} \xrightarrow{\sim} \mathfrak{g}^{*}:$ Killing form.

- $\mathbf{C}\left[\mathfrak{g}^{*}\right]=$ Sym \mathfrak{g} is a Poisson algebra: $\{x, y\}=[x, y]$ for $x, y \in \mathfrak{g}$.
- Jacobson-Morosov Theorem (see Emanuele Di Bella's talk): f is embedded in a $\mathfrak{s l}_{2}$-triple (e, h, f).
- Dynkin grading:

$$
\mathfrak{g}=\bigoplus_{\delta \in \mathbb{Z}} \mathfrak{g}_{\delta}, \quad \mathfrak{g}_{\delta}:=\{x \in \mathfrak{g} \mid[h, x]=\delta x\} .
$$

- $\chi:=\kappa_{0}(f)$ is the linear form associated to f.

Recalls about Slodowy slices

$\kappa_{0}: \mathfrak{g} \xrightarrow{\sim} \mathfrak{g}^{*}:$ Killing form.

- $\mathbf{C}\left[\mathfrak{g}^{*}\right]=$ Sym \mathfrak{g} is a Poisson algebra: $\{x, y\}=[x, y]$ for $x, y \in \mathfrak{g}$.
- Jacobson-Morosov Theorem (see Emanuele Di Bella's talk): f is embedded in a $\mathfrak{s l}_{2}$-triple (e, h, f).
- Dynkin grading:

$$
\mathfrak{g}=\bigoplus_{\delta \in \mathbb{Z}} \mathfrak{g}_{\delta}, \quad \mathfrak{g}_{\delta}:=\{x \in \mathfrak{g} \mid[h, x]=\delta x\} .
$$

- $\chi:=\kappa_{0}(f)$ is the linear form associated to f.

Definition: Slodowy slice
$S_{f}:=\kappa_{0}(f+\operatorname{Ker} \operatorname{ad}(e))=\chi+\operatorname{Ker~ad}^{*}(e)$ affine subspace of \mathfrak{g}^{*}.

Recalls about Slodowy slices

$\kappa_{0}: \mathfrak{g} \xrightarrow{\sim} \mathfrak{g}^{*}:$ Killing form.

- $\mathbf{C}\left[\mathfrak{g}^{*}\right]=$ Sym \mathfrak{g} is a Poisson algebra: $\{x, y\}=[x, y]$ for $x, y \in \mathfrak{g}$.
- Jacobson-Morosov Theorem (see Emanuele Di Bella's talk): f is embedded in a $\mathfrak{s l}_{2}$-triple (e, h, f).
- Dynkin grading:

$$
\mathfrak{g}=\bigoplus_{\delta \in \mathbf{Z}} \mathfrak{g}_{\delta}, \quad \mathfrak{g}_{\delta}:=\{x \in \mathfrak{g} \mid[h, x]=\delta x\} .
$$

- $\chi:=\kappa_{0}(f)$ is the linear form associated to f.

Definition: Slodowy slice
$S_{f}:=\kappa_{0}(f+\operatorname{Kerad}(e))=\chi+\operatorname{Ker~ad}^{*}(e)$ affine subspace of \mathfrak{g}^{*}.
Remark
Transverse slice of Gwyn Bellamy's talk.

Recalls about Slodowy slices

$\kappa_{0}: \mathfrak{g} \xrightarrow{\sim} \mathfrak{g}^{*}:$ Killing form.

- $\mathbf{C}\left[\mathfrak{g}^{*}\right]=\operatorname{Sym} \mathfrak{g}$ is a Poisson algebra: $\{x, y\}=[x, y]$ for $x, y \in \mathfrak{g}$.
- Jacobson-Morosov Theorem (see Emanuele Di Bella's talk): f is embedded in a $\mathfrak{s l}_{2}$-triple (e, h, f).
- Dynkin grading:

$$
\mathfrak{g}=\bigoplus_{\delta \in \mathbf{Z}} \mathfrak{g}_{\delta}, \quad \mathfrak{g}_{\delta}:=\{x \in \mathfrak{g} \mid[h, x]=\delta x\} .
$$

- $\chi:=\kappa_{0}(f)$ is the linear form associated to f.

Definition: Slodowy slice
$S_{f}:=\kappa_{0}(f+\operatorname{Kerad}(e))=\chi+\operatorname{Ker~ad}^{*}(e)$ affine subspace of \mathfrak{g}^{*}.
Remark
Transverse slice of Gwyn Bellamy's talk.
Its Poisson structure is induced by Hamiltonian reduction.

Hamiltonian reduction in a nutshell

Hamiltonian reduction in a nutshell

The construction

Hamiltonian reduction in a nutshell

The construction

Affine Poisson variety X

Hamiltonian reduction in a nutshell

The construction

Affine Poisson variety X
Algebraic group action $M \curvearrowright X$

Hamiltonian reduction in a nutshell

The construction

Affine Poisson variety X
Algebraic group action $M \curvearrowright X$
Moment map $\mu: X \rightarrow \mathfrak{m}^{*}$

Hamiltonian reduction in a nutshell

The construction

Affine Poisson variety X
Algebraic group action $M \curvearrowright X$
Moment map $\mu: X \rightarrow \mathfrak{m}^{*}$
Character $\xi \in \mathfrak{m}^{*}$

Hamiltonian reduction in a nutshell

The construction

Affine Poisson variety X
$\begin{aligned} & \text { Algebraic group action } M \curvearrowright X \\ & \text { Moment map } \mu: X \rightarrow \mathfrak{m}^{*}\end{aligned} \rightsquigarrow \quad \mu^{-1}(\xi) / M=\operatorname{Spec}(\mathbf{C}[X] / I)^{M}$.
Character $\xi \in \mathfrak{m}^{*}$

Hamiltonian reduction in a nutshell

The construction

Affine Poisson variety X
$\begin{aligned} & \text { Algebraic group action } M \curvearrowright X \\ & \text { Moment map } \mu: X \rightarrow \mathfrak{m}^{*}\end{aligned} \rightsquigarrow \quad \mu^{-1}(\xi) / M=\operatorname{Spec}(\mathbf{C}[X] / I)^{M}$.
Character $\xi \in \mathfrak{m}^{*}$

Poisson structure on the reduction

Hamiltonian reduction in a nutshell

The construction

Affine Poisson variety X
$\begin{aligned} & \text { Algebraic group action } M \curvearrowright X \\ & \text { Moment map } \mu: X \rightarrow \mathfrak{m}^{*}\end{aligned} \rightsquigarrow \quad \mu^{-1}(\xi) / M=\operatorname{Spec}(\mathbf{C}[X] / I)^{M}$.
Character $\xi \in \mathfrak{m}^{*}$

Poisson structure on the reduction

$$
\left\{F_{1} \bmod I, F_{2} \bmod I\right\}:=\left\{F_{1}, F_{2}\right\} \bmod I
$$

Hamiltonian reduction in a nutshell

The construction

Affine Poisson variety X
$\begin{aligned} & \text { Algebraic group action } M \curvearrowright X \\ & \text { Moment map } \mu: X \rightarrow \mathfrak{m}^{*}\end{aligned} \rightsquigarrow \quad \mu^{-1}(\xi) / M=\operatorname{Spec}(\mathbf{C}[X] / I)^{M}$.
Character $\xi \in \mathfrak{m}^{*}$

Poisson structure on the reduction

$$
\left\{F_{1} \bmod I, F_{2} \bmod I\right\}:=\left\{F_{1}, F_{2}\right\} \bmod I
$$

Remark

Hamiltonian reduction in a nutshell

The construction

Affine Poisson variety X
Algebraic group action $M \curvearrowright X$

$$
\rightsquigarrow \quad \mu^{-1}(\xi) / M=\operatorname{Spec}(\mathbf{C}[X] / I)^{M} .
$$

Moment map $\mu: X \rightarrow \mathfrak{m}^{*}$
Character $\xi \in \mathfrak{m}^{*}$

Poisson structure on the reduction

$$
\left\{F_{1} \bmod I, F_{2} \bmod I\right\}:=\left\{F_{1}, F_{2}\right\} \bmod I
$$

Remark

Explicit description would require to compute the ring of invariants $(\mathbf{C}[X] / I)^{M}$: difficult.

Hamiltonian reduction (Kostant 1978, Gan-Ginzburg 2002)

Hamiltonian reduction (Kostant 1978, Gan-Ginzburg 2002)

1. Poisson variety \mathfrak{g}^{*}.

Hamiltonian reduction (Kostant 1978, Gan-Ginzburg 2002)

1. Poisson variety \mathfrak{g}^{*}.
2. Construct some unipotent subgroup M of G such that $\mathfrak{g} \geqslant 1 \subseteq \mathfrak{m} \subseteq \mathfrak{g}_{\geqslant 2}$ and $2 \operatorname{dim} \mathfrak{m}=\operatorname{dim} G \cdot f$.

Hamiltonian reduction (Kostant 1978, Gan-Ginzburg 2002)

1. Poisson variety \mathfrak{g}^{*}.
2. Construct some unipotent subgroup M of G such that $\mathfrak{g}_{\geqslant 1} \subseteq \mathfrak{m} \subseteq \mathfrak{g}_{\geqslant 2}$ and $2 \operatorname{dim} \mathfrak{m}=\operatorname{dim} G \cdot f$.
3. Moment map: restriction map $\mu: \mathfrak{g}^{*} \rightarrow \mathfrak{m}^{*},\left.\xi \mapsto \xi\right|_{\mathfrak{m}}$.

Hamiltonian reduction (Kostant 1978, Gan-Ginzburg 2002)

1. Poisson variety \mathfrak{g}^{*}.
2. Construct some unipotent subgroup M of G such that $\mathfrak{g} \geqslant 1 \subseteq \mathfrak{m} \subseteq \mathfrak{g} \geqslant 2$ and $2 \operatorname{dim} \mathfrak{m}=\operatorname{dim} G \cdot f$.
3. Moment map: restriction map $\mu: \mathfrak{g}^{*} \rightarrow \mathfrak{m}^{*},\left.\xi \mapsto \xi\right|_{\mathfrak{m}}$.
4. $\bar{\chi}:=\left.\chi\right|_{\mathfrak{m}}$ is a character of \mathfrak{m}.

Hamiltonian reduction (Kostant 1978, Gan-Ginzburg 2002)

1. Poisson variety \mathfrak{g}^{*}.
2. Construct some unipotent subgroup M of G such that $\mathfrak{g} \geqslant 1 \subseteq \mathfrak{m} \subseteq \mathfrak{g} \geqslant 2$ and $2 \operatorname{dim} \mathfrak{m}=\operatorname{dim} G \cdot f$.
3. Moment map: restriction map $\mu: \mathfrak{g}^{*} \rightarrow \mathfrak{m}^{*},\left.\xi \mapsto \xi\right|_{\mathfrak{m}}$.
4. $\bar{\chi}:=\left.\chi\right|_{\mathfrak{m}}$ is a character of \mathfrak{m}.

Theorem (Gan-Ginzburg)
The coadjoint action induces an isomorphism $M \times S_{f} \cong \mu^{-1}(\bar{\chi})$.

Hamiltonian reduction (Kostant 1978, Gan-Ginzburg 2002)

1. Poisson variety \mathfrak{g}^{*}.
2. Construct some unipotent subgroup M of G such that $\mathfrak{g} \geqslant 1 \subseteq \mathfrak{m} \subseteq \mathfrak{g} \geqslant 2$ and $2 \operatorname{dim} \mathfrak{m}=\operatorname{dim} G \cdot f$.
3. Moment map: restriction map $\mu: \mathfrak{g}^{*} \rightarrow \mathfrak{m}^{*},\left.\xi \mapsto \xi\right|_{\mathfrak{m}}$.
4. $\bar{\chi}:=\left.\chi\right|_{\mathfrak{m}}$ is a character of \mathfrak{m}.

Theorem (Gan-Ginzburg)
The coadjoint action induces an isomorphism $M \times S_{f} \cong \mu^{-1}(\bar{\chi})$.
Hence: $\quad S_{f} \cong \mu^{-1}(\bar{\chi}) / M$.

Hamiltonian reduction (Kostant 1978, Gan-Ginzburg 2002)

1. Poisson variety \mathfrak{g}^{*}.
2. Construct some unipotent subgroup M of G such that $\mathfrak{g} \geqslant 1 \subseteq \mathfrak{m} \subseteq \mathfrak{g} \geqslant 2$ and $2 \operatorname{dim} \mathfrak{m}=\operatorname{dim} G \cdot f$.
3. Moment map: restriction map $\mu: \mathfrak{g}^{*} \rightarrow \mathfrak{m}^{*},\left.\xi \mapsto \xi\right|_{\mathfrak{m}}$.
4. $\bar{\chi}:=\left.\chi\right|_{\mathfrak{m}}$ is a character of \mathfrak{m}.

Theorem (Gan-Ginzburg)
The coadjoint action induces an isomorphism $M \times S_{f} \cong \mu^{-1}(\bar{\chi})$.
Hence: $\quad S_{f} \cong \mu^{-1}(\bar{\chi}) / M$.
Particular case (Kostant)
Assume f is regular, i.e. dense orbit in the nilpotent cone.

Hamiltonian reduction (Kostant 1978, Gan-Ginzburg 2002)

1. Poisson variety \mathfrak{g}^{*}.
2. Construct some unipotent subgroup M of G such that $\mathfrak{g}_{\geqslant 1} \subseteq \mathfrak{m} \subseteq \mathfrak{g}_{\geqslant 2}$ and $2 \operatorname{dim} \mathfrak{m}=\operatorname{dim} G \cdot f$.
3. Moment map: restriction map $\mu: \mathfrak{g}^{*} \rightarrow \mathfrak{m}^{*}, \xi \mapsto \xi \mid \mathfrak{m}$.
4. $\bar{\chi}:=\left.\chi\right|_{\mathfrak{m}}$ is a character of \mathfrak{m}.

Theorem (Gan-Ginzburg)
The coadjoint action induces an isomorphism $M \times S_{f} \cong \mu^{-1}(\bar{\chi})$.
Hence: $\quad S_{f} \cong \mu^{-1}(\bar{\chi}) / M$.
Particular case (Kostant)
Assume f is regular, i.e. dense orbit in the nilpotent cone.
Then, M is the unipotent radical in a Borel subgroup of G.

Hamiltonian reduction (Kostant 1978, Gan-Ginzburg 2002)

1. Poisson variety \mathfrak{g}^{*}.
2. Construct some unipotent subgroup M of G such that $\mathfrak{g}_{\geqslant 1} \subseteq \mathfrak{m} \subseteq \mathfrak{g}_{\geqslant 2}$ and $2 \operatorname{dim} \mathfrak{m}=\operatorname{dim} G \cdot f$.
3. Moment map: restriction map $\mu: \mathfrak{g}^{*} \rightarrow \mathfrak{m}^{*}, \xi \mapsto \xi \mid \mathfrak{m}$.
4. $\bar{\chi}:=\left.\chi\right|_{\mathfrak{m}}$ is a character of \mathfrak{m}.

Theorem (Gan-Ginzburg)
The coadjoint action induces an isomorphism $M \times S_{f} \cong \mu^{-1}(\bar{\chi})$.
Hence: $\quad S_{f} \cong \mu^{-1}(\bar{\chi}) / M$.
Particular case (Kostant)
Assume f is regular, i.e. dense orbit in the nilpotent cone.
Then, M is the unipotent radical in a Borel subgroup of G.
In fact, $\mathbf{C}\left[S_{f}\right] \cong \mathbf{C}\left[\mathfrak{g}^{*}\right]^{G}$ (Poisson center).

Hamiltonian reduction (Kostant 1978, Gan-Ginzburg 2002)

1. Poisson variety \mathfrak{g}^{*}.
2. Construct some unipotent subgroup M of G such that $\mathfrak{g}_{\geqslant 1} \subseteq \mathfrak{m} \subseteq \mathfrak{g}_{\geqslant 2}$ and $2 \operatorname{dim} \mathfrak{m}=\operatorname{dim} G \cdot f$.
3. Moment map: restriction map $\mu: \mathfrak{g}^{*} \rightarrow \mathfrak{m}^{*}, \xi \mapsto \xi \mid \mathfrak{m}$.
4. $\bar{\chi}:=\left.\chi\right|_{\mathfrak{m}}$ is a character of \mathfrak{m}.

Theorem (Gan-Ginzburg)
The coadjoint action induces an isomorphism $M \times S_{f} \cong \mu^{-1}(\bar{\chi})$.
Hence: $\quad S_{f} \cong \mu^{-1}(\bar{\chi}) / M$.
Particular case (Kostant)
Assume f is regular, i.e. dense orbit in the nilpotent cone.
Then, M is the unipotent radical in a Borel subgroup of G.
In fact, $\mathbf{C}\left[S_{f}\right] \cong \mathbf{C}\left[\mathfrak{g}^{*}\right]^{G}$ (Poisson center).

Example of the particular case

Hamiltonian reduction (Kostant 1978, Gan-Ginzburg 2002)

1. Poisson variety \mathfrak{g}^{*}.
2. Construct some unipotent subgroup M of G such that $\mathfrak{g}_{\geqslant 1} \subseteq \mathfrak{m} \subseteq \mathfrak{g}_{\geqslant 2}$ and $2 \operatorname{dim} \mathfrak{m}=\operatorname{dim} G \cdot f$.
3. Moment map: restriction map $\mu: \mathfrak{g}^{*} \rightarrow \mathfrak{m}^{*}, \xi \mapsto \xi \mid \mathfrak{m}$.
4. $\bar{\chi}:=\left.\chi\right|_{\mathfrak{m}}$ is a character of \mathfrak{m}.

Theorem (Gan-Ginzburg)

The coadjoint action induces an isomorphism $M \times S_{f} \cong \mu^{-1}(\bar{\chi})$.
Hence: $\quad S_{f} \cong \mu^{-1}(\bar{\chi}) / M$.
Particular case (Kostant)
Assume f is regular, i.e. dense orbit in the nilpotent cone.
Then, M is the unipotent radical in a Bored subgroup of G.
In fact, $\mathbf{C}\left[S_{f}\right] \cong \mathbf{C}\left[\mathfrak{g}^{*}\right]^{G}$ (Poisson center).

Example of the particular case

$\mathfrak{g}=\mathfrak{s l}_{n}$ and $f=E_{2,1}+E_{3,2}+\cdots+E_{n, n-1}$.

Reduction by stages

Reduction by stages

- (Marsden, Misiolek, Ortega, Perlmutter and Rati 2007) General framework for reduction by stages.

Reduction by stages

- (Marsden, Misiolek, Ortega, Perlmutter and Rati 2007) General framework for reduction by stages.
- $f_{1}, f_{2} \in \mathfrak{g}$ two nilpotent elements.

Reduction by stages

- (Marsden, Misiolek, Ortega, Perlmutter and Rati 2007) General framework for reduction by stages.
- $f_{1}, f_{2} \in \mathfrak{g}$ two nilpotent elements.
- Slodowy slices $S_{i}:=S_{f_{i}}$ and linear form $\chi_{i}:=\kappa_{0}\left(f_{i}\right)$.
- Unipotent groups M_{i}, moment maps $\mu_{i}: \mathfrak{g}^{*} \rightarrow \mathfrak{m}_{i}{ }^{*}$ and characters $\bar{\chi}_{i}$ such that $S_{i} \cong \mu_{i}^{-1}\left(\bar{\chi}_{i}\right) / M_{i}$.

Reduction by stages

- (Marsden, Misiolek, Ortega, Perlmutter and Rati 2007) General framework for reduction by stages.
- $f_{1}, f_{2} \in \mathfrak{g}$ two nilpotent elements.
- Slodowy slices $S_{i}:=S_{f_{i}}$ and linear form $\chi_{i}:=\kappa_{0}\left(f_{i}\right)$.
- Unipotent groups M_{i}, moment maps $\mu_{i}: \mathfrak{g}^{*} \rightarrow \mathfrak{m}_{i}{ }^{*}$ and characters $\bar{\chi}_{i}$ such that $S_{i} \cong \mu_{i}^{-1}\left(\bar{\chi}_{i}\right) / M_{i}$.

Theorem (Genra-J. 2022)

Reduction by stages

- (Marsden, Misiolek, Ortega, Perlmutter and Rati 2007) General framework for reduction by stages.
- $f_{1}, f_{2} \in \mathfrak{g}$ two nilpotent elements.
- Slodowy slices $S_{i}:=S_{f_{i}}$ and linear form $\chi_{i}:=\kappa_{0}\left(f_{i}\right)$.
- Unipotent groups M_{i}, moment maps $\mu_{i}: \mathfrak{g}^{*} \rightarrow \mathfrak{m}_{i}{ }^{*}$ and characters $\bar{\chi}_{i}$ such that $S_{i} \cong \mu_{i}^{-1}\left(\bar{\chi}_{i}\right) / M_{i}$.

Theorem (Genra-J. 2022)

Assume the following conditions:

$$
M_{2}=M_{1} \rtimes M_{0}, \quad f_{2}-f_{1}, \mathfrak{m}_{0} \subseteq \mathfrak{g}_{0}^{(1)}, \quad f_{1} \in \mathfrak{g}_{-2}^{(2)}
$$

Reduction by stages

- (Marsden, Misiolek, Ortega, Perlmutter and Rati 2007) General framework for reduction by stages.
- $f_{1}, f_{2} \in \mathfrak{g}$ two nilpotent elements.
- Slodowy slices $S_{i}:=S_{f_{i}}$ and linear form $\chi_{i}:=\kappa_{0}\left(f_{i}\right)$.
- Unipotent groups M_{i}, moment maps $\mu_{i}: \mathfrak{g}^{*} \rightarrow \mathfrak{m}_{i}{ }^{*}$ and characters $\bar{\chi}_{i}$ such that $S_{i} \cong \mu_{i}^{-1}\left(\bar{\chi}_{i}\right) / M_{i}$.

Theorem (Genra-J. 2022)

Assume the following conditions:

$$
M_{2}=M_{1} \rtimes M_{0}, \quad f_{2}-f_{1}, \mathfrak{m}_{0} \subseteq \mathfrak{g}_{0}^{(1)}, \quad f_{1} \in \mathfrak{g}_{-2}^{(2)}
$$

Then there is an induced Hamiltonian action $M_{0} \curvearrowright S_{1} \xrightarrow{\mu_{0}} \mathfrak{m}_{0}{ }^{*}$

Reduction by stages

- (Marsden, Misiolek, Ortega, Perlmutter and Rati 2007) General framework for reduction by stages.
- $f_{1}, f_{2} \in \mathfrak{g}$ two nilpotent elements.
- Slodowy slices $S_{i}:=S_{f_{i}}$ and linear form $\chi_{i}:=\kappa_{0}\left(f_{i}\right)$.
- Unipotent groups M_{i}, moment maps $\mu_{i}: \mathfrak{g}^{*} \rightarrow \mathfrak{m}_{i}{ }^{*}$ and characters $\bar{\chi}_{i}$ such that $S_{i} \cong \mu_{i}^{-1}\left(\bar{\chi}_{i}\right) / M_{i}$.

Theorem (Genra-J. 2022)

Assume the following conditions:

$$
M_{2}=M_{1} \rtimes M_{0}, \quad f_{2}-f_{1}, \mathfrak{m}_{0} \subseteq \mathfrak{g}_{0}^{(1)}, \quad f_{1} \in \mathfrak{g}_{-2}^{(2)}
$$

Then there is an induced Hamiltonian action $M_{0} \curvearrowright S_{1} \xrightarrow{\mu_{0}} \mathfrak{m}_{0}{ }^{*}$ such that $\mu_{0}{ }^{-1}\left(\bar{\chi}_{0}\right) / M_{0} \cong \mu_{2}^{-1}\left(\bar{\chi}_{2}\right) / M_{2}$, where $\bar{\chi}_{0}:=\left.\chi_{2}\right|_{\mathfrak{m}_{0}}$.

Reduction by stages

- (Marsden, Misiolek, Ortega, Perlmutter and Rati 2007) General framework for reduction by stages.
- $f_{1}, f_{2} \in \mathfrak{g}$ two nilpotent elements.
- Slodowy slices $S_{i}:=S_{f_{i}}$ and linear form $\chi_{i}:=\kappa_{0}\left(f_{i}\right)$.
- Unipotent groups M_{i}, moment maps $\mu_{i}: \mathfrak{g}^{*} \rightarrow \mathfrak{m}_{i}{ }^{*}$ and characters $\bar{\chi}_{i}$ such that $S_{i} \cong \mu_{i}^{-1}\left(\bar{\chi}_{i}\right) / M_{i}$.

Theorem (Genra-J. 2022)

Assume the following conditions:

$$
M_{2}=M_{1} \rtimes M_{0}, \quad f_{2}-f_{1}, \mathfrak{m}_{0} \subseteq \mathfrak{g}_{0}^{(1)}, \quad f_{1} \in \mathfrak{g}_{-2}^{(2)}
$$

Then there is an induced Hamiltonian action $M_{0} \curvearrowright S_{1} \xrightarrow{\mu_{0}} \mathfrak{m}_{0}{ }^{*}$ such that $\mu_{0}{ }^{-1}\left(\bar{\chi}_{0}\right) / M_{0} \cong \mu_{2}^{-1}\left(\bar{\chi}_{2}\right) / M_{2}$, where $\bar{\chi}_{0}:=\left.\chi_{2}\right|_{\mathfrak{m}_{0}}$.

Key point

There is an isomorphism $M_{1} \times \mu_{0}{ }^{-1}\left(\bar{\chi}_{0}\right) \cong \mu_{2}{ }^{-1}\left(\bar{\chi}_{2}\right)$.

Reduction by stages

- (Marsden, Misiolek, Ortega, Perlmutter and Rati 2007) General framework for reduction by stages.
- $f_{1}, f_{2} \in \mathfrak{g}$ two nilpotent elements.
- Slodowy slices $S_{i}:=S_{f_{i}}$ and linear form $\chi_{i}:=\kappa_{0}\left(f_{i}\right)$.
- Unipotent groups M_{i}, moment maps $\mu_{i}: \mathfrak{g}^{*} \rightarrow \mathfrak{m}_{i}{ }^{*}$ and characters $\bar{\chi}_{i}$ such that $S_{i} \cong \mu_{i}^{-1}\left(\bar{\chi}_{i}\right) / M_{i}$.

Theorem (Genra-J. 2022)

Assume the following conditions:

$$
M_{2}=M_{1} \rtimes M_{0}, \quad f_{2}-f_{1}, \mathfrak{m}_{0} \subseteq \mathfrak{g}_{0}^{(1)}, \quad f_{1} \in \mathfrak{g}_{-2}^{(2)}
$$

Then there is an induced Hamiltonian action $M_{0} \curvearrowright S_{1} \xrightarrow{\mu_{0}} \mathfrak{m}_{0}{ }^{*}$ such that $\mu_{0}{ }^{-1}\left(\bar{\chi}_{0}\right) / M_{0} \cong \mu_{2}^{-1}\left(\bar{\chi}_{2}\right) / M_{2}$, where $\bar{\chi}_{0}:=\left.\chi_{2}\right|_{\mathfrak{m}_{0}}$.

Key point

There is an isomorphism $M_{1} \times \mu_{0}{ }^{-1}\left(\bar{\chi}_{0}\right) \cong \mu_{2}{ }^{-1}\left(\bar{\chi}_{2}\right)$.

Remark

The conditions imply $G \cdot f_{1} \subseteq \overline{G \cdot f_{2}}$.

A family of examples: hook type nilpotent elements

A family of examples: hook type nilpotent elements

- $\mathfrak{g}:=\mathfrak{s l}_{n}$: nilpotent orbits indexed by partitions of n.

A family of examples: hook type nilpotent elements

- $\mathfrak{g}:=\mathfrak{s l}_{n}$: nilpotent orbits indexed by partitions of n.
- For $0 \leqslant \ell \leqslant n$, the nilpotent orbit \mathbf{O}_{ℓ} corresponds to the partition $\left(\ell, 1^{n-\ell}\right)$.

A family of examples: hook type nilpotent elements

- $\mathfrak{g}:=\mathfrak{s l}_{n}$: nilpotent orbits indexed by partitions of n.
- For $0 \leqslant \ell \leqslant n$, the nilpotent orbit \mathbf{O}_{ℓ} corresponds to the partition $\left(\ell, 1^{n-\ell}\right)$.

Proposition (Genra-J. 2022)

Pick two nilpotent elements $f_{i} \in \mathbf{O}_{\ell_{i}}$ for $\ell_{1}<\ell_{2}$.
Then the reduction by stages theorem holds:

A family of examples: hook type nilpotent elements

- $\mathfrak{g}:=\mathfrak{s l}_{n}$: nilpotent orbits indexed by partitions of n.
- For $0 \leqslant \ell \leqslant n$, the nilpotent orbit \mathbf{O}_{ℓ} corresponds to the partition $\left(\ell, 1^{n-\ell}\right)$.

Proposition (Genra-J. 2022)

Pick two nilpotent elements $f_{i} \in \mathbf{O}_{\ell_{i}}$ for $\ell_{1}<\ell_{2}$.

Then the reduction by stages theorem holds:

Other examples in classical and exceptional types.

Reduction by stages for finite
W-algebra

Quantization of Slodowy slices (Premet 2002, Gan-Ginzburg 2002)

Quantization of Slodowy slices (Premet 2002, Gan-Ginzburg 2002)

- (PBW Theorem) $\mathscr{U}(\mathfrak{g})$ quantises $\mathbf{C}\left[\mathfrak{g}^{*}\right]$: $\operatorname{gr} \mathscr{U}(\mathfrak{g}) \cong \mathbf{C}\left[\mathfrak{g}^{*}\right]$ as Poisson algebras.

Quantization of Slodowy slices (Premet 2002, Gan-Ginzburg 2002)

- (PBW Theorem) $\mathscr{U}(\mathfrak{g})$ quantises $\mathbf{C}\left[\mathfrak{g}^{*}\right]$: $\operatorname{gr} \mathscr{U}(\mathfrak{g}) \cong \mathbf{C}\left[\mathfrak{g}^{*}\right]$ as Poisson algebras.

Definition: finite W-algebra (Premet)
$\mathscr{U}(\mathfrak{g}, f):=(\mathscr{U}(\mathfrak{g}) / I)^{\text {ad }(\mathfrak{m})}$ (quantum Hamiltonian reduction), where I is the left ideal spanned by $a-\chi(a), a \in \mathfrak{m}$.

Quantization of Slodowy slices (Premet 2002, Gan-Ginzburg 2002)

- (PBW Theorem) $\mathscr{U}(\mathfrak{g})$ quantises $\mathbf{C}\left[\mathfrak{g}^{*}\right]$: gr $\mathscr{U}(\mathfrak{g}) \cong \mathbf{C}\left[\mathfrak{g}^{*}\right]$ as Poisson algebras.

Definition: finite W-algebra (Premet)
$\mathscr{U}(\mathfrak{g}, f):=(\mathscr{U}(\mathfrak{g}) / I)^{\text {ad }(\mathfrak{m})}$ (quantum Hamiltonian reduction), where I is the left ideal spanned by $a-\chi(a), a \in \mathfrak{m}$.

- There is a natural filtration on $\mathscr{U}(\mathfrak{g}, f)$ (Kazhdan filtration).

Quantization of Slodowy slices (Premet 2002, Gan-Ginzburg 2002)

- (PBW Theorem) $\mathscr{U}(\mathfrak{g})$ quantises $\mathbf{C}\left[\mathfrak{g}^{*}\right]$: $\operatorname{gr} \mathscr{U}(\mathfrak{g}) \cong \mathbf{C}\left[\mathfrak{g}^{*}\right]$ as Poisson algebras.

Definition: finite W-algebra (Premet)
$\mathscr{U}(\mathfrak{g}, f):=(\mathscr{U}(\mathfrak{g}) / I)^{\text {ad }(\mathfrak{m})}$ (quantum Hamiltonian reduction), where I is the left ideal spanned by $a-\chi(a), a \in \mathfrak{m}$.

- There is a natural filtration on $\mathscr{U}(\mathfrak{g}, f)$ (Kazhdan filtration).
- $\operatorname{gr} \mathscr{U}(\mathfrak{g}, f)$ is Poisson.

Quantization of Slodowy slices (Premet 2002, Gan-Ginzburg 2002)

- (PBW Theorem) $\mathscr{U}(\mathfrak{g})$ quantises $\mathbf{C}\left[\mathfrak{g}^{*}\right]$: $\operatorname{gr} \mathscr{U}(\mathfrak{g}) \cong \mathbf{C}\left[\mathfrak{g}^{*}\right]$ as Poisson algebras.

Definition: finite W-algebra (Premet)
$\mathscr{U}(\mathfrak{g}, f):=(\mathscr{U}(\mathfrak{g}) / I)^{\text {ad }(\mathfrak{m})}$ (quantum Hamiltonian reduction), where I is the left ideal spanned by $a-\chi(a), a \in \mathfrak{m}$.

- There is a natural filtration on $\mathscr{U}(\mathfrak{g}, f)$ (Kazhdan filtration).
- $\operatorname{gr} \mathscr{U}(\mathfrak{g}, f)$ is Poisson.

Theorem (Gan-Ginzburg)
$\mathscr{U}(\mathfrak{g}, f)$ quantises $\mathbf{C}\left[S_{f}\right]: \quad \operatorname{gr} \mathscr{U}(\mathfrak{g}, f) \cong \mathbf{C}\left[S_{f}\right]$.

Reduction by stages

Reduction by stages

Theorem (Genra-J. 2022)
Assume the following conditions:

$$
M_{2}=M_{1} \rtimes M_{0}, \quad f_{2}-f_{1}, \mathfrak{m}_{0} \subseteq \mathfrak{g}_{0}^{(1)}, \quad f_{1} \in \mathfrak{g}_{-2}^{(2)}
$$

Reduction by stages

Theorem (Genra-J. 2022)
Assume the following conditions:

$$
M_{2}=M_{1} \rtimes M_{0}, \quad f_{2}-f_{1}, \mathfrak{m}_{0} \subseteq \mathfrak{g}_{0}^{(1)}, \quad f_{1} \in \mathfrak{g}_{-2}^{(2)}
$$

Then, one can take the reduction of $\mathscr{U}\left(\mathfrak{g}, f_{1}\right)$: $\quad\left(\mathscr{U}\left(\mathfrak{g}, f_{1}\right) / I_{0}\right)^{\mathrm{ad}\left(\mathfrak{m}_{0}\right)}$,

Reduction by stages

Theorem (Genra-J. 2022)
Assume the following conditions:

$$
M_{2}=M_{1} \rtimes M_{0}, \quad f_{2}-f_{1}, \mathfrak{m}_{0} \subseteq \mathfrak{g}_{0}^{(1)}, \quad f_{1} \in \mathfrak{g}_{-2}^{(2)}
$$

Then, one can take the reduction of $\mathscr{U}\left(\mathfrak{g}, f_{1}\right)$: $\quad\left(\mathscr{U}\left(\mathfrak{g}, f_{1}\right) / I_{0}\right)^{\mathrm{ad}\left(\mathfrak{m}_{0}\right)}$, where I_{0} is the left ideal of $\mathscr{U}\left(\mathfrak{g}, f_{1}\right)$ spanned by $a-\chi_{2}(a)$, for $a \in \mathfrak{m}_{0}$,

Reduction by stages

Theorem (Genra-J. 2022)
Assume the following conditions:

$$
M_{2}=M_{1} \rtimes M_{0}, \quad f_{2}-f_{1}, \mathfrak{m}_{0} \subseteq \mathfrak{g}_{0}^{(1)}, \quad f_{1} \in \mathfrak{g}_{-2}^{(2)} .
$$

Then, one can take the reduction of $\mathscr{U}\left(\mathfrak{g}, f_{1}\right)$: $\quad\left(\mathscr{U}\left(\mathfrak{g}, f_{1}\right) / I_{0}\right)^{\operatorname{ad}\left(\mathfrak{m}_{0}\right)}$, where I_{0} is the left ideal of $\mathscr{U}\left(\mathfrak{g}, f_{1}\right)$ spanned by $a-\chi_{2}(a)$, for $a \in \mathfrak{m}_{0}$, and there is an algebra isomorphism

$$
\left(\mathscr{U}\left(\mathfrak{g}, f_{1}\right) / I_{0}\right)^{\operatorname{ad}\left(\mathfrak{m}_{0}\right)} \xrightarrow{\sim} \mathscr{U}\left(\mathfrak{g}, f_{2}\right) .
$$

Quantisation and chiralisation of
 Kraft and Procesi's Theorems

Row elimination in type \mathbf{A}

Row elimination in type \mathbf{A}

- $\mathfrak{g}:=\mathfrak{g l}_{n}$ (reductive is ok!).

Row elimination in type \mathbf{A}

- $\mathfrak{g}:=\mathfrak{g l}_{n}$ (reductive is ok!).
- f_{2} associated to partition $\left(\lambda_{1} \geqslant \cdots \geqslant \lambda_{k}, \underline{\lambda}_{0}\right)$.

Row elimination in type \mathbf{A}

- $\mathfrak{g}:=\mathfrak{g l}_{n}$ (reductive is ok!).
- f_{2} associated to partition $\left(\lambda_{1} \geqslant \cdots \geqslant \lambda_{k}, \lambda_{0}\right)$.
- $\underline{\lambda}_{0}$ partition of $n_{0}<n: f_{0} \in \mathfrak{g l}_{n_{0}}$ associated to partition $\underline{\lambda}_{0}$.

Row elimination in type \mathbf{A}

- $\mathfrak{g}:=\mathfrak{g l}_{n}$ (reductive is ok!).
- f_{2} associated to partition $\left(\lambda_{1} \geqslant \cdots \geqslant \lambda_{k}, \lambda_{0}\right)$.
- $\underline{\lambda}_{0}$ partition of $n_{0}<n: f_{0} \in \mathfrak{g l}_{n_{0}}$ associated to partition $\underline{\lambda}_{0}$.
- f_{1} associated to partition $\left(\lambda_{1}, \ldots, \lambda_{k}, 1^{n_{0}}\right)$.

Row elimination in type \mathbf{A}

- $\mathfrak{g}:=\mathfrak{g l}_{n}$ (reductive is ok!).
- f_{2} associated to partition $\left(\lambda_{1} \geqslant \cdots \geqslant \lambda_{k}, \underline{\lambda}_{0}\right)$.
- $\underline{\lambda}_{0}$ partition of $n_{0}<n: f_{0} \in \mathfrak{g l}_{n_{0}}$ associated to partition $\underline{\lambda}_{0}$.
- f_{1} associated to partition $\left(\lambda_{1}, \ldots, \lambda_{k}, 1^{n_{0}}\right)$.

Theorem (Premet)

There is a Hamiltonian action $\mathrm{GL}_{n_{0}} \curvearrowright S_{f_{1}} \xrightarrow{\mu} \mathfrak{g l}_{n_{0}}{ }^{*}$.

Row elimination in type \mathbf{A}

- $\mathfrak{g}:=\mathfrak{g l}_{n}$ (reductive is ok!).
- f_{2} associated to partition $\left(\lambda_{1} \geqslant \cdots \geqslant \lambda_{k}, \underline{\lambda}_{0}\right)$.
- $\underline{\lambda}_{0}$ partition of $n_{0}<n: f_{0} \in \mathfrak{g l}_{n_{0}}$ associated to partition $\underline{\lambda}_{0}$.
- f_{1} associated to partition $\left(\lambda_{1}, \ldots, \lambda_{k}, 1^{n_{0}}\right)$.

Theorem (Premet)

There is a Hamiltonian action $\mathrm{GL}_{n_{0}} \curvearrowright S_{f_{1}} \xrightarrow{\mu} \mathfrak{g l}_{n_{0}}{ }^{*}$.
Pick M_{0} unipotent subgroup of $\mathrm{GL}_{n_{0}}$ corresponding to $f_{0} \in \mathfrak{g l}_{n_{0}}$.

Row elimination in type \mathbf{A}

- $\mathfrak{g}:=\mathfrak{g l}_{n}$ (reductive is ok!).
- f_{2} associated to partition $\left(\lambda_{1} \geqslant \cdots \geqslant \lambda_{k}, \underline{\lambda}_{0}\right)$.
- $\underline{\lambda}_{0}$ partition of $n_{0}<n: f_{0} \in \mathfrak{g l}_{n_{0}}$ associated to partition $\underline{\lambda}_{0}$.
- f_{1} associated to partition $\left(\lambda_{1}, \ldots, \lambda_{k}, 1^{n_{0}}\right)$.

Theorem (Premet)

There is a Hamiltonian action $\mathrm{GL}_{n_{0}} \curvearrowright S_{f_{1}} \xrightarrow{\mu} \mathfrak{g l}_{n_{0}}{ }^{*}$.
Pick M_{0} unipotent subgroup of $\mathrm{GL}_{n_{0}}$ corresponding to $f_{0} \in \mathfrak{g l}_{n_{0}}$.
Theorem (J.)

Row elimination in type \mathbf{A}

- $\mathfrak{g}:=\mathfrak{g l}_{n}$ (reductive is ok!).
- f_{2} associated to partition $\left(\lambda_{1} \geqslant \cdots \geqslant \lambda_{k}, \lambda_{0}\right)$.
- $\underline{\lambda}_{0}$ partition of $n_{0}<n: f_{0} \in \mathfrak{g l}_{n_{0}}$ associated to partition $\underline{\lambda}_{0}$.
- f_{1} associated to partition $\left(\lambda_{1}, \ldots, \lambda_{k}, 1^{n_{0}}\right)$.

Theorem (Premet)

There is a Hamiltonian action $\mathrm{GL}_{n_{0}} \curvearrowright S_{f_{1}} \xrightarrow{\mu} \mathfrak{g l}_{n_{0}}{ }^{*}$.
Pick M_{0} unipotent subgroup of $\mathrm{GL}_{n_{0}}$ corresponding to $f_{0} \in \mathfrak{g l}_{n_{0}}$.
Theorem (J.)

1. The Hamiltonian reduction of $S_{f_{1}}$ with respect to the action of M_{0} is $S_{f_{2}}$.

Row elimination in type \mathbf{A}

- $\mathfrak{g}:=\mathfrak{g l}_{n}$ (reductive is ok!).
- f_{2} associated to partition $\left(\lambda_{1} \geqslant \cdots \geqslant \lambda_{k}, \underline{\lambda}_{0}\right)$.
- $\underline{\lambda}_{0}$ partition of $n_{0}<n: f_{0} \in \mathfrak{g l}_{n_{0}}$ associated to partition $\underline{\lambda}_{0}$.
- f_{1} associated to partition $\left(\lambda_{1}, \ldots, \lambda_{k}, 1^{n_{0}}\right)$.

Theorem (Premet)

There is a Hamiltonian action $\mathrm{GL}_{n_{0}} \curvearrowright S_{f_{1}} \xrightarrow{\mu} \mathfrak{g l}_{n_{0}}{ }^{*}$.
Pick M_{0} unipotent subgroup of $\mathrm{GL}_{n_{0}}$ corresponding to $f_{0} \in \mathfrak{g l}_{n_{0}}$.
Theorem (J.)

1. The Hamiltonian reduction of $S_{f_{1}}$ with respect to the action of M_{0} is $S_{f_{2}}$.
2. One gets a (dominant) Poisson map: $S_{f_{2}} \longrightarrow S_{f_{0}}$.

Row elimination in type \mathbf{A}

- $\mathfrak{g}:=\mathfrak{g l}_{n}$ (reductive is ok!).
- f_{2} associated to partition $\left(\lambda_{1} \geqslant \cdots \geqslant \lambda_{k}, \underline{\lambda}_{0}\right)$.
- $\underline{\lambda}_{0}$ partition of $n_{0}<n: f_{0} \in \mathfrak{g l}_{n_{0}}$ associated to partition $\underline{\lambda}_{0}$.
- f_{1} associated to partition $\left(\lambda_{1}, \ldots, \lambda_{k}, 1^{n_{0}}\right)$.

Theorem (Premet)

There is a Hamiltonian action $\mathrm{GL}_{n_{0}} \curvearrowright S_{f_{1}} \xrightarrow{\mu} \mathfrak{g l}_{n_{0}}{ }^{*}$.
Pick M_{0} unipotent subgroup of $\mathrm{GL}_{n_{0}}$ corresponding to $f_{0} \in \mathfrak{g l}_{n_{0}}$.
Theorem (J.)

1. The Hamiltonian reduction of $S_{f_{1}}$ with respect to the action of M_{0} is $S_{f_{2}}$.
2. One gets a (dominant) Poisson map: $S_{f_{2}} \longrightarrow S_{f_{0}}$.

Remark

Row elimination in type \mathbf{A}

- $\mathfrak{g}:=\mathfrak{g l}_{n}$ (reductive is ok!).
- f_{2} associated to partition $\left(\lambda_{1} \geqslant \cdots \geqslant \lambda_{k}, \lambda_{0}\right)$.
- $\underline{\lambda}_{0}$ partition of $n_{0}<n: f_{0} \in \mathfrak{g l}_{n_{0}}$ associated to partition $\underline{\lambda}_{0}$.
- f_{1} associated to partition $\left(\lambda_{1}, \ldots, \lambda_{k}, 1^{n_{0}}\right)$.

Theorem (Premet)

There is a Hamiltonian action $\mathrm{GL}_{n_{0}} \curvearrowright S_{f_{1}} \xrightarrow{\mu} \mathfrak{g l}_{n_{0}}{ }^{*}$.
Pick M_{0} unipotent subgroup of $\mathrm{GL}_{n_{0}}$ corresponding to $f_{0} \in \mathfrak{g l}_{n_{0}}$.

Theorem (J.)

1. The Hamiltonian reduction of $S_{f_{1}}$ with respect to the action of M_{0} is $S_{f_{2}}$.
2. One gets a (dominant) Poisson map: $S_{f_{2}} \longrightarrow S_{f_{0}}$.

Remark

Reinterpretation of the row elimination rule of Kraft and Procesi.
Rule used to classify minimal degenerations mentioned in Gwyn's talk.

Quantisation and chiralisation

- $\mathfrak{g}:=\mathfrak{g l}_{n}$.
- f_{2} associated to partition $\left(\lambda_{1}, \ldots, \lambda_{k}, \underline{\lambda}_{0}\right)$.
- $\underline{\lambda}_{0}$ partition of $n_{0}<n: f_{0} \in \mathfrak{g l}_{n_{0}}$ associated to partition $\underline{\lambda}_{0}$.
- f_{1} associated to partition $\left(\lambda_{1}, \ldots, \lambda_{k}, 1^{n_{0}}\right)$.

Quantisation and chiralisation

- $\mathfrak{g}:=\mathfrak{g l}_{n}$.
- f_{2} associated to partition $\left(\lambda_{1}, \ldots, \lambda_{k}, \underline{\lambda}_{0}\right)$.
- $\underline{\lambda}_{0}$ partition of $n_{0}<n: f_{0} \in \mathfrak{g l}_{n_{0}}$ associated to partition $\underline{\lambda}_{0}$.
- f_{1} associated to partition $\left(\lambda_{1}, \ldots, \lambda_{k}, 1^{n_{0}}\right)$.

Theorem (J.)

Quantisation and chiralisation

- $\mathfrak{g}:=\mathfrak{g l}_{n}$.
- f_{2} associated to partition $\left(\lambda_{1}, \ldots, \lambda_{k}, \underline{\lambda}_{0}\right)$.
- $\underline{\lambda}_{0}$ partition of $n_{0}<n: f_{0} \in \mathfrak{g l}_{n_{0}}$ associated to partition $\underline{\lambda}_{0}$.
- f_{1} associated to partition $\left(\lambda_{1}, \ldots, \lambda_{k}, 1^{n_{0}}\right)$.

Theorem (J.)

1. $\mathscr{U}\left(\mathfrak{g l}_{n}, f_{1}\right)$ is the Hamiltonian reduction of $\mathscr{U}\left(\mathfrak{g l}_{n}, f_{2}\right)$.

Quantisation and chiralisation

- $\mathfrak{g}:=\mathfrak{g l}_{n}$.
- f_{2} associated to partition $\left(\lambda_{1}, \ldots, \lambda_{k}, \underline{\lambda}_{0}\right)$.
- $\underline{\lambda}_{0}$ partition of $n_{0}<n: f_{0} \in \mathfrak{g l}_{n_{0}}$ associated to partition $\underline{\lambda}_{0}$.
- f_{1} associated to partition $\left(\lambda_{1}, \ldots, \lambda_{k}, 1^{n_{0}}\right)$.

Theorem (J.)

1. $\mathscr{U}\left(\mathfrak{g l}_{n}, f_{1}\right)$ is the Hamiltonian reduction of $\mathscr{U}\left(\mathfrak{g l}_{n}, f_{2}\right)$.
2. There is an embedding $\mathscr{U}\left(\mathfrak{g l}_{n_{0}}, f_{0}\right) \longleftrightarrow \mathscr{U}\left(\mathfrak{g l}_{n}, f_{2}\right)$.

Quantisation and chiralisation

- $\mathfrak{g}:=\mathfrak{g l}_{n}$.
- f_{2} associated to partition $\left(\lambda_{1}, \ldots, \lambda_{k}, \underline{\lambda}_{0}\right)$.
- $\underline{\lambda}_{0}$ partition of $n_{0}<n: f_{0} \in \mathfrak{g l}_{n_{0}}$ associated to partition $\underline{\lambda}_{0}$.
- f_{1} associated to partition $\left(\lambda_{1}, \ldots, \lambda_{k}, 1^{n_{0}}\right)$.

Theorem (J.)

1. $\mathscr{U}\left(\mathfrak{g l}_{n}, f_{1}\right)$ is the Hamiltonian reduction of $\mathscr{U}\left(\mathfrak{g l}_{n}, f_{2}\right)$.
2. There is an embedding $\mathscr{U}\left(\mathfrak{g l}_{n_{0}}, f_{0}\right) \longleftrightarrow \mathscr{U}\left(\mathfrak{g l}_{n}, f_{2}\right)$.

Conjecture \star

Quantisation and chiralisation

- $\mathfrak{g}:=\mathfrak{g l}_{n}$.
- f_{2} associated to partition $\left(\lambda_{1}, \ldots, \lambda_{k}, \underline{\lambda}_{0}\right)$.
- $\underline{\lambda}_{0}$ partition of $n_{0}<n: f_{0} \in \mathfrak{g l}_{n_{0}}$ associated to partition $\underline{\lambda}_{0}$.
- f_{1} associated to partition $\left(\lambda_{1}, \ldots, \lambda_{k}, 1^{n_{0}}\right)$.

Theorem (J.)

1. $\mathscr{U}\left(\mathfrak{g l}_{n}, f_{1}\right)$ is the Hamiltonian reduction of $\mathscr{U}\left(\mathfrak{g l}_{n}, f_{2}\right)$.
2. There is an embedding $\mathscr{U}\left(\mathfrak{g l}_{n_{0}}, f_{0}\right) \longleftrightarrow \mathscr{U}\left(\mathfrak{g l}_{n}, f_{2}\right)$.

Conjecture \star

1. $\mathscr{W}^{\kappa}\left(\mathfrak{g l}_{n}, f_{1}\right)$ is the Hamiltonian reduction of $\mathscr{W}^{\kappa}\left(\mathfrak{g l}_{n}, f_{2}\right)$.

Quantisation and chiralisation

- $\mathfrak{g}:=\mathfrak{g l}_{n}$.
- f_{2} associated to partition $\left(\lambda_{1}, \ldots, \lambda_{k}, \underline{\lambda}_{0}\right)$.
- $\underline{\lambda}_{0}$ partition of $n_{0}<n: f_{0} \in \mathfrak{g l}_{n_{0}}$ associated to partition $\underline{\lambda}_{0}$.
- f_{1} associated to partition $\left(\lambda_{1}, \ldots, \lambda_{k}, 1^{n_{0}}\right)$.

Theorem (J.)

1. $\mathscr{U}\left(\mathfrak{g l}_{n}, f_{1}\right)$ is the Hamiltonian reduction of $\mathscr{U}\left(\mathfrak{g l}_{n}, f_{2}\right)$.
2. There is an embedding $\mathscr{U}\left(\mathfrak{g l}_{n_{0}}, f_{0}\right) \longleftrightarrow \mathscr{U}\left(\mathfrak{g l}_{n}, f_{2}\right)$.

Conjecture \star

1. $\mathscr{W}^{\kappa}\left(\mathfrak{g l}_{n}, f_{1}\right)$ is the Hamiltonian reduction of $\mathscr{W}^{\kappa}\left(\mathfrak{g l}_{n}, f_{2}\right)$.
2. There is an embedding $\mathscr{W}^{\kappa^{\prime}}\left(\mathfrak{g l}_{n_{0}}, f_{0}\right) \longleftrightarrow \mathscr{W}^{\kappa}\left(\mathfrak{g l}_{n}, f_{2}\right)$.

Thank you for your attention!

