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Introduction



Quantisation and chiralisation

We work over C.

General idea
Study noncommutative objects (algebras, vertex algebras) by looking at
associated geometric objects (schemes, jet schemes).

Quantization

• X : affine Poisson variety, i.e. Poisson bracket {•, •} on C[X ].
• A quantization of X is a noncommutative filtered algebra A such

that gr A ∼= C[X ] and gr[•, •] = {•, •}.

Chiralisation ⋆

• Jet scheme J∞X : differential scheme that represents the functor
R 7! X (R[[t]]).

• A chiralisation of X is a noncommutative vertex algebra V such that
gr V ∼= C[J∞X ].
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Big picture of finite W-algebras

G : simple algebraic group over C; g: its simple Lie algebra.

• U (g): the universal enveloping algebra of g,
• C[g∗]: polynomial functions on g∗.

f ∈ g: nilpotent element.

• U (g, f ): the finite W-algebra associated to (g, f ),
• C[Sf ]: polynomial functions on the Slodowy slice Sf .

Associative
algebras

U (g) C[g∗]

U (g, f ) C[Sf ]

gr

Hamiltonian reduction Hamiltonian reduction

gr

Poisson
algebras

4
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Problem of reduction by stages

Questions
f1, f2 ∈ g are two nilpotent elements.

C[g∗]

C[S1] C[S2]

HR HR

?
HR

gr
 −

U (g)

U (g, f1) U (g, f2)

HR HR

?
HR

• (Morgan 2015) “Stage conditions” and first conjectures for finite
W-algebras.

• (Kamnitzer-Pham-Weekes 2022) Some particular cases.
• (Fehily, Fasquel-Nakatsuka 2023, Butson 2024,

Creutzig-Fasquel-Linshaw-Nakatsuka 2024) Inverse reduction
between affine W-algebras.

Today
Positive answers to these questions (Genra-J. arXiv:2212.06022).
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Motivation: affine W-algebras ⋆

κ0 : g ∼
! g∗: Killing form, κ = kκ0 for k ∈ C.

Vertex
algebras

Kac-Moody algebra
V κ(g)

C[J∞g∗]

W κ(g, f )
Affine W-algebra

C[J∞Sf ]

gr

Hamiltonian reduction Hamiltonian reduction

gr

Poisson
vertex
algebras

Question
V κ(g)

W κ(g, f1) W κ(g, f2)

HR HR

?
HR

In progress (Genra-J.)
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Reduction by stages for Slodowy
slices



Recalls about Slodowy slices

κ0 : g ∼
! g∗: Killing form.

• C[g∗] = Sym g is a Poisson algebra: {x , y} = [x , y ] for x , y ∈ g.
• Jacobson-Morosov Theorem (see Emanuele Di Bella’s talk): f is

embedded in a sl2-triple (e, h, f ).
• Dynkin grading:

g =
⊕
δ∈Z

gδ, gδ := {x ∈ g | [h, x ] = δx}.

• χ := κ0(f ) is the linear form associated to f .

Definition: Slodowy slice
Sf := κ0(f + Ker ad(e)) = χ + Ker ad∗(e) affine subspace of g∗.

Remark
Transverse slice of Gwyn Bellamy’s talk.

Its Poisson structure is induced by Hamiltonian reduction.

7
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embedded in a sl2-triple (e, h, f ).
• Dynkin grading:

g =
⊕
δ∈Z

gδ, gδ := {x ∈ g | [h, x ] = δx}.

• χ := κ0(f ) is the linear form associated to f .

Definition: Slodowy slice
Sf := κ0(f + Ker ad(e)) = χ + Ker ad∗(e) affine subspace of g∗.

Remark
Transverse slice of Gwyn Bellamy’s talk.

Its Poisson structure is induced by Hamiltonian reduction.
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Hamiltonian reduction in a nutshell

The construction

∣∣∣∣∣∣∣∣∣
Affine Poisson variety X
Algebraic group action M ↷ X
Moment map µ : X ! m∗

Character ξ ∈ m∗

⇝ µ−1(ξ)/M = Spec
(

C[X ]/I
)M

.

Poisson structure on the reduction

{F1 mod I, F2 mod I} := {F1, F2} mod I.

Remark
Explicit description would require to compute the ring of invariants(

C[X ]/I
)M

: difficult.
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Hamiltonian reduction (Kostant 1978, Gan-Ginzburg 2002)

1. Poisson variety g∗.
2. Construct some unipotent subgroup M of G such that

g⩾1 ⊆ m ⊆ g⩾2 and 2 dimm = dim G · f .
3. Moment map: restriction map µ : g∗ ! m∗, ξ 7! ξ|m.

4. χ := χ|m is a character of m.

Theorem (Gan-Ginzburg)
The coadjoint action induces an isomorphism M × Sf ∼= µ−1(χ).
Hence: Sf ∼= µ−1(χ)/M.

Particular case (Kostant)
Assume f is regular, i.e. dense orbit in the nilpotent cone.
Then, M is the unipotent radical in a Borel subgroup of G .
In fact, C[Sf ] ∼= C[g∗]G (Poisson center).

Example of the particular case
g = sln and f = E2,1 + E3,2 + · · · + En,n−1.
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Reduction by stages

• (Marsden, Misiolek, Ortega, Perlmutter and Rati 2007) General
framework for reduction by stages.

• f1, f2 ∈ g two nilpotent elements.
• Slodowy slices Si := Sfi and linear form χi := κ0(fi ).
• Unipotent groups Mi , moment maps µi : g∗ ! mi

∗ and characters χi
such that Si ∼= µi

−1(χi )/Mi .

Theorem (Genra-J. 2022)
Assume the following conditions:

M2 = M1 ⋊ M0, f2 − f1,m0 ⊆ g
(1)
0 , f1 ∈ g

(2)
−2.

Then there is an induced Hamiltonian action M0 ↷ S1
µ0−! m0

∗such that
µ0

−1(χ0)/M0 ∼= µ2
−1(χ2)/M2, where χ0 := χ2|m0 .

Key point
There is an isomorphism M1 × µ0

−1(χ0) ∼= µ2
−1(χ2).

Remark
The conditions imply G · f1 ⊆ G · f2.
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such that Si ∼= µi

−1(χi )/Mi .

Theorem (Genra-J. 2022)
Assume the following conditions:

M2 = M1 ⋊ M0, f2 − f1,m0 ⊆ g
(1)
0 , f1 ∈ g

(2)
−2.

Then there is an induced Hamiltonian action M0 ↷ S1
µ0−! m0

∗such that
µ0

−1(χ0)/M0 ∼= µ2
−1(χ2)/M2, where χ0 := χ2|m0 .

Key point
There is an isomorphism M1 × µ0

−1(χ0) ∼= µ2
−1(χ2).

Remark
The conditions imply G · f1 ⊆ G · f2. 10



A family of examples: hook type nilpotent elements

• g := sln: nilpotent orbits indexed by partitions of n.
• For 0 ⩽ ℓ ⩽ n, the nilpotent orbit Oℓ corresponds to the partition

(ℓ, 1n−ℓ).

12· · ·ℓ − 1ℓ

ℓ + 1

...

n

Proposition (Genra-J. 2022)
Pick two nilpotent elements fi ∈ Oℓi for ℓ1 < ℓ2.
Then the reduction by stages theorem holds:

C[g∗]

C[S1] C[S2]

Other examples in classical and exceptional types.
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Reduction by stages for finite
W-algebra



Quantization of Slodowy slices (Premet 2002, Gan-Ginzburg
2002)

• (PBW Theorem) U (g) quantises C[g∗]:
gr U (g) ∼= C[g∗] as Poisson algebras.

Definition: finite W-algebra (Premet)
U (g, f ) := (U (g)/I)ad(m) (quantum Hamiltonian reduction),
where I is the left ideal spanned by a − χ(a), a ∈ m.

• There is a natural filtration on U (g, f ) (Kazhdan filtration).
• gr U (g, f ) is Poisson.

Theorem (Gan-Ginzburg)
U (g, f ) quantises C[Sf ]: gr U (g, f ) ∼= C[Sf ].
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Reduction by stages

Theorem (Genra-J. 2022)
Assume the following conditions:

M2 = M1 ⋊ M0, f2 − f1,m0 ⊆ g
(1)
0 , f1 ∈ g

(2)
−2.

Then, one can take the reduction of U (g, f1): (U (g, f1)/I0)ad(m0),
where I0 is the left ideal of U (g, f1) spanned by a − χ2(a), for a ∈ m0,
and there is an algebra isomorphism

(U (g, f1)/I0)ad(m0) ∼
−! U (g, f2).
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Quantisation and chiralisation of
Kraft and Procesi’s Theorems



Row elimination in type A

• g := gln (reductive is ok!).
• f2 associated to partition (λ1 ⩾ · · · ⩾ λk , λ0).
• λ0 partition of n0 < n: f0 ∈ gln0 associated to partition λ0.
• f1 associated to partition (λ1, . . . , λk , 1n0).

Theorem (Premet)
There is a Hamiltonian action GLn0 ↷ Sf1

µ
−!gln0

∗.

Pick M0 unipotent subgroup of GLn0 corresponding to f0 ∈ gln0 .

Theorem (J.)

1. The Hamiltonian reduction of Sf1 with respect to the action of M0 is
Sf2 .

2. One gets a (dominant) Poisson map: Sf2−!Sf0 .

Remark
Reinterpretation of the row elimination rule of Kraft and Procesi.
Rule used to classify minimal degenerations mentioned in Gwyn’s talk.
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Quantisation and chiralisation

• g := gln.
• f2 associated to partition (λ1, . . . , λk , λ0).
• λ0 partition of n0 < n: f0 ∈ gln0 associated to partition λ0.
• f1 associated to partition (λ1, . . . , λk , 1n0).

Theorem (J.)

1. U (gln, f1) is the Hamiltonian reduction of U (gln, f2).
2. There is an embedding U (gln0 , f0)↪−!U (gln, f2).

Conjecture ⋆

1. W κ(gln, f1) is the Hamiltonian reduction of W κ(gln, f2).
2. There is an embedding W κ′(gln0 , f0)↪−!W κ(gln, f2).
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Thank you for your attention!
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