Chiralisation of reduction by stages

Thibault Juillard (project with Naoki Genra) June 6, 2024 — Groups and their actions, Levico Terme Université Paris-Saclay, Institut de Mathématiques d'Orsay Introduction

Reduction by stages for Slodowy slices

Reduction by stages for finite W-algebra

Quantisation and chiralisation of Kraft and Procesi's Theorems

Introduction

We work over $\boldsymbol{C}.$

Quantisation and chiralisation

We work over \mathbf{C} .

General idea

We work over ${\boldsymbol{\mathsf{C}}}.$

General idea

Study noncommutative objects (algebras, vertex algebras)

We work over \mathbf{C} .

General idea

Study noncommutative objects (algebras, vertex algebras) by looking at associated geometric objects (schemes, jet schemes).

We work over \mathbf{C} .

General idea

Study noncommutative objects (algebras, vertex algebras) by looking at associated geometric objects (schemes, jet schemes).

Quantization

General idea

Study noncommutative objects (algebras, vertex algebras) by looking at associated geometric objects (schemes, jet schemes).

Quantization

• X: affine Poisson variety, i.e. Poisson bracket {•,•} on **C**[X].

General idea

Study noncommutative objects (algebras, vertex algebras) by looking at associated geometric objects (schemes, jet schemes).

Quantization

- X: affine Poisson variety, i.e. Poisson bracket {●,●} on **C**[X].
- A quantization of X is a noncommutative filtered algebra A such that gr A ≅ C[X] and gr[●, ●] = {●, ●}.

General idea

Study noncommutative objects (algebras, vertex algebras) by looking at associated geometric objects (schemes, jet schemes).

Quantization

- X: affine Poisson variety, i.e. Poisson bracket {●,●} on **C**[X].
- A quantization of X is a noncommutative filtered algebra A such that gr A ≅ C[X] and gr[●, ●] = {●, ●}.

Chiralisation ★

General idea

Study noncommutative objects (algebras, vertex algebras) by looking at associated geometric objects (schemes, jet schemes).

Quantization

- X: affine Poisson variety, i.e. Poisson bracket {●,●} on C[X].
- A quantization of X is a noncommutative filtered algebra A such that gr A ≅ C[X] and gr[●, ●] = {●, ●}.

Chiralisation ★

- Jet scheme $J_{\infty}X$: differential scheme that represents the functor $R \mapsto X(R[[t]])$.

General idea

Study noncommutative objects (algebras, vertex algebras) by looking at associated geometric objects (schemes, jet schemes).

Quantization

- X: affine Poisson variety, i.e. Poisson bracket {●,●} on C[X].
- A quantization of X is a noncommutative filtered algebra A such that gr A ≅ C[X] and gr[●, ●] = {●, ●}.

Chiralisation ★

- Jet scheme $J_{\infty}X$: differential scheme that represents the functor $R \mapsto X(R[[t]]).$
- A chiralisation of X is a noncommutative vertex algebra 𝒱 such that gr 𝒱 ≅ C[J_∞X].

Big picture of finite W-algebras

Big picture of finite W-algebras

- G: simple algebraic group over C; g: its simple Lie algebra.
 - $\mathscr{U}(\mathfrak{g})$: the universal enveloping algebra of \mathfrak{g} ,

Big picture of finite W-algebras

- $\mathscr{U}(\mathfrak{g})$: the universal enveloping algebra of \mathfrak{g} ,
- $C[\mathfrak{g}^*]$: polynomial functions on \mathfrak{g}^* .

- $\mathscr{U}(\mathfrak{g}){:}$ the universal enveloping algebra of $\mathfrak{g},$
- $C[\mathfrak{g}^*]$: polynomial functions on \mathfrak{g}^* .
- $f \in \mathfrak{g}$: nilpotent element.

- $\mathscr{U}(\mathfrak{g})$: the universal enveloping algebra of \mathfrak{g} ,
- $C[\mathfrak{g}^*]$: polynomial functions on \mathfrak{g}^* .
- $f \in \mathfrak{g}$: nilpotent element.
 - $\mathscr{U}(\mathfrak{g}, f)$: the finite W-algebra associated to (\mathfrak{g}, f) ,

- G: simple algebraic group over C; g: its simple Lie algebra.
 - $\mathscr{U}(\mathfrak{g})$: the universal enveloping algebra of \mathfrak{g} ,
 - $C[\mathfrak{g}^*]$: polynomial functions on \mathfrak{g}^* .
- $f \in \mathfrak{g}$: nilpotent element.
 - $\mathscr{U}(\mathfrak{g}, f)$: the finite W-algebra associated to (\mathfrak{g}, f) ,
 - **C**[*S_f*]: polynomial functions on the Slodowy slice *S_f*.

- G: simple algebraic group over C; g: its simple Lie algebra.
 - $\mathscr{U}(\mathfrak{g})$: the universal enveloping algebra of \mathfrak{g} ,
 - $C[\mathfrak{g}^*]$: polynomial functions on \mathfrak{g}^* .
- $f \in \mathfrak{g}$: nilpotent element.
 - $\mathscr{U}(\mathfrak{g}, f)$: the finite W-algebra associated to (\mathfrak{g}, f) ,
 - **C**[*S_f*]: polynomial functions on the Slodowy slice *S_f*.

Questions $f_1, f_2 \in \mathfrak{g}$ are two nilpotent elements.

Questions $f_1, f_2 \in \mathfrak{g}$ are two nilpotent elements.

Questions

 $f_1, f_2 \in \mathfrak{g}$ are two nilpotent elements.

Questions

 $f_1, f_2 \in \mathfrak{g}$ are two nilpotent elements.

 (Morgan 2015) "Stage conditions" and first conjectures for finite W-algebras.

Questions

 $f_1, f_2 \in \mathfrak{g}$ are two nilpotent elements.

- (Morgan 2015) "Stage conditions" and first conjectures for finite W-algebras.
- (Kamnitzer-Pham-Weekes 2022) Some particular cases.

Questions

 $f_1, f_2 \in \mathfrak{g}$ are two nilpotent elements.

- (Morgan 2015) "Stage conditions" and first conjectures for finite W-algebras.
- (Kamnitzer-Pham-Weekes 2022) Some particular cases.
- (Fehily, Fasquel-Nakatsuka 2023, Butson 2024, Creutzig-Fasquel-Linshaw-Nakatsuka 2024) Inverse reduction between affine W-algebras.

Questions

 $f_1, f_2 \in \mathfrak{g}$ are two nilpotent elements.

- (Morgan 2015) "Stage conditions" and first conjectures for finite W-algebras.
- (Kamnitzer-Pham-Weekes 2022) Some particular cases.
- (Fehily, Fasquel-Nakatsuka 2023, Butson 2024, Creutzig-Fasquel-Linshaw-Nakatsuka 2024) Inverse reduction between affine W-algebras.

Today

Questions

 $f_1, f_2 \in \mathfrak{g}$ are two nilpotent elements.

- (Morgan 2015) "Stage conditions" and first conjectures for finite W-algebras.
- (Kamnitzer-Pham-Weekes 2022) Some particular cases.
- (Fehily, Fasquel-Nakatsuka 2023, Butson 2024, Creutzig-Fasquel-Linshaw-Nakatsuka 2024) Inverse reduction between affine W-algebras.

Today

Positive answers to these questions (Genra-J. arXiv:2212.06022).

Motivation: affine W-algebras ★

Motivation: affine W-algebras \star

Motivation: affine W-algebras ★

Motivation: affine W-algebras ★

Reduction by stages for Slodowy slices
Recalls about Slodowy slices

 $\kappa_0:\mathfrak{g}\overset{\sim}{\to}\mathfrak{g}^*$: Killing form.

Recalls about Slodowy slices

 $\kappa_0:\mathfrak{g}\overset{\sim}{\to}\mathfrak{g}^*$: Killing form.

• $C[\mathfrak{g}^*] = \operatorname{Sym} \mathfrak{g}$ is a Poisson algebra:

Recalls about Slodowy slices

 $\kappa_0: \mathfrak{g} \xrightarrow{\sim} \mathfrak{g}^*$: Killing form.

• $C[\mathfrak{g}^*] = \operatorname{Sym} \mathfrak{g}$ is a Poisson algebra: $\{x, y\} = [x, y]$ for $x, y \in \mathfrak{g}$.

 $\kappa_0:\mathfrak{g}\overset{\sim}{\to}\mathfrak{g}^*$: Killing form.

- $\mathbf{C}[\mathfrak{g}^*] = \operatorname{Sym} \mathfrak{g}$ is a Poisson algebra: $\{x, y\} = [x, y]$ for $x, y \in \mathfrak{g}$.
- Jacobson-Morosov Theorem (see Emanuele Di Bella's talk): f is embedded in a sl₂-triple (e, h, f).

- $\mathbf{C}[\mathfrak{g}^*] = \operatorname{Sym} \mathfrak{g}$ is a Poisson algebra: $\{x, y\} = [x, y]$ for $x, y \in \mathfrak{g}$.
- Jacobson-Morosov Theorem (see Emanuele Di Bella's talk): f is embedded in a sl₂-triple (e, h, f).
- Dynkin grading:

$$\mathfrak{g} = \bigoplus_{\delta \in \mathbf{Z}} \mathfrak{g}_{\delta}, \quad \mathfrak{g}_{\delta} \coloneqq \{ x \in \mathfrak{g} \mid [h, x] = \delta x \}.$$

 $\kappa_0:\mathfrak{g}\overset{\sim}{\to}\mathfrak{g}^*$: Killing form.

- $\mathbf{C}[\mathfrak{g}^*] = \operatorname{Sym} \mathfrak{g}$ is a Poisson algebra: $\{x, y\} = [x, y]$ for $x, y \in \mathfrak{g}$.
- Jacobson-Morosov Theorem (see Emanuele Di Bella's talk): f is embedded in a sl₂-triple (e, h, f).
- Dynkin grading:

$$\mathfrak{g} = \bigoplus_{\delta \in \mathbf{Z}} \mathfrak{g}_{\delta}, \quad \mathfrak{g}_{\delta} \coloneqq \{ x \in \mathfrak{g} \mid [h, x] = \delta x \}.$$

• $\chi := \kappa_0(f)$ is the linear form associated to f.

- $C[\mathfrak{g}^*] = \operatorname{Sym} \mathfrak{g}$ is a Poisson algebra: $\{x, y\} = [x, y]$ for $x, y \in \mathfrak{g}$.
- Jacobson-Morosov Theorem (see Emanuele Di Bella's talk): f is embedded in a sl₂-triple (e, h, f).
- Dynkin grading:

$$\mathfrak{g} = \bigoplus_{\delta \in \mathbf{Z}} \mathfrak{g}_{\delta}, \quad \mathfrak{g}_{\delta} \coloneqq \{ x \in \mathfrak{g} \mid [h, x] = \delta x \}.$$

• $\chi := \kappa_0(f)$ is the linear form associated to f.

Definition: Slodowy slice $S_f := \kappa_0(f + \text{Ker ad}(e)) = \chi + \text{Ker ad}^*(e)$ affine subspace of \mathfrak{g}^* .

- $\mathbf{C}[\mathfrak{g}^*] = \operatorname{Sym} \mathfrak{g}$ is a Poisson algebra: $\{x, y\} = [x, y]$ for $x, y \in \mathfrak{g}$.
- Jacobson-Morosov Theorem (see Emanuele Di Bella's talk): f is embedded in a sl₂-triple (e, h, f).
- Dynkin grading:

$$\mathfrak{g} = \bigoplus_{\delta \in \mathbf{Z}} \mathfrak{g}_{\delta}, \quad \mathfrak{g}_{\delta} \coloneqq \{ x \in \mathfrak{g} \mid [h, x] = \delta x \}.$$

Definition: Slodowy slice $S_f := \kappa_0(f + \text{Ker ad}(e)) = \chi + \text{Ker ad}^*(e)$ affine subspace of \mathfrak{g}^* .

Remark Transverse slice of Gwyn Bellamy's talk.

- $\mathbf{C}[\mathfrak{g}^*] = \operatorname{Sym} \mathfrak{g}$ is a Poisson algebra: $\{x, y\} = [x, y]$ for $x, y \in \mathfrak{g}$.
- Jacobson-Morosov Theorem (see Emanuele Di Bella's talk): f is embedded in a sl₂-triple (e, h, f).
- Dynkin grading:

$$\mathfrak{g} = \bigoplus_{\delta \in \mathbf{Z}} \mathfrak{g}_{\delta}, \quad \mathfrak{g}_{\delta} \coloneqq \{ x \in \mathfrak{g} \mid [h, x] = \delta x \}.$$

• $\chi := \kappa_0(f)$ is the linear form associated to f.

Definition: Slodowy slice $S_f := \kappa_0(f + \text{Ker ad}(e)) = \chi + \text{Ker ad}^*(e)$ affine subspace of \mathfrak{g}^* .

Remark

Transverse slice of Gwyn Bellamy's talk.

Its Poisson structure is induced by Hamiltonian reduction.

Affine Poisson variety X

Affine Poisson variety X Algebraic group action $M \curvearrowright X$

Affine Poisson variety X Algebraic group action $M \curvearrowright X$ Moment map $\mu : X \to \mathfrak{m}^*$

Affine Poisson variety X Algebraic group action $M \curvearrowright X$ Moment map $\mu : X \to \mathfrak{m}^*$ Character $\xi \in \mathfrak{m}^*$

Affine Poisson variety X Algebraic group action $M \frown X$ Moment map $\mu : X \to \mathfrak{m}^*$ Character $\xi \in \mathfrak{m}^*$

$$\rightsquigarrow \qquad \mu^{-1}(\xi)/M = \operatorname{Spec}\left(\mathbf{C}[X]/I\right)^M.$$

Affine Poisson variety X Algebraic group action $M \frown X$ Moment map $\mu : X \to \mathfrak{m}^*$ Character $\xi \in \mathfrak{m}^*$

$$\Rightarrow \quad \mu^{-1}(\xi)/M = \operatorname{Spec}\left(\mathbf{C}[X]/I\right)^M.$$

Poisson structure on the reduction

Affine Poisson variety X Algebraic group action $M \curvearrowright X$ Moment map $\mu : X \to \mathfrak{m}^*$ Character $\xi \in \mathfrak{m}^*$

$$\Rightarrow \qquad \mu^{-1}(\xi)/M = \operatorname{Spec}\left(\mathbf{C}[X]/I\right)^{M}.$$

Poisson structure on the reduction

$$\{F_1 \bmod I, F_2 \bmod I\} \coloneqq \{F_1, F_2\} \bmod I.$$

Affine Poisson variety X Algebraic group action $M \frown X$ Moment map $\mu : X \to \mathfrak{m}^*$ Character $\xi \in \mathfrak{m}^*$

$$\Rightarrow \qquad \mu^{-1}(\xi)/M = \operatorname{Spec}\left(\mathbf{C}[X]/I\right)^{M}.$$

Poisson structure on the reduction

$$\{F_1 \bmod I, F_2 \bmod I\} \coloneqq \{F_1, F_2\} \bmod I.$$

Remark

Affine Poisson variety X Algebraic group action $M \curvearrowright X$ Moment map $\mu : X \to \mathfrak{m}^*$ Character $\xi \in \mathfrak{m}^*$

$$\Rightarrow \quad \mu^{-1}(\xi)/M = \operatorname{Spec}\left(\mathbf{C}[X]/I\right)^{M}.$$

Poisson structure on the reduction

$$\{F_1 \bmod I, F_2 \bmod I\} \coloneqq \{F_1, F_2\} \bmod I.$$

Remark

Explicit description would require to compute the ring of invariants $(\mathbf{C}[X]/I)^M$: difficult.

1. Poisson variety \mathfrak{g}^* .

- 1. Poisson variety $\mathfrak{g}^{\ast}.$
- 2. Construct some unipotent subgroup M of G such that $\mathfrak{g}_{\geq 1} \subseteq \mathfrak{m} \subseteq \mathfrak{g}_{\geq 2}$ and $2 \dim \mathfrak{m} = \dim G \cdot f$.

- 1. Poisson variety \mathfrak{g}^* .
- 2. Construct some unipotent subgroup M of G such that $\mathfrak{g}_{\geq 1} \subseteq \mathfrak{m} \subseteq \mathfrak{g}_{\geq 2}$ and $2 \dim \mathfrak{m} = \dim G \cdot f$.
- 3. Moment map: restriction map $\mu : \mathfrak{g}^* \to \mathfrak{m}^*, \xi \mapsto \xi|_{\mathfrak{m}}.$

- 1. Poisson variety \mathfrak{g}^* .
- 2. Construct some unipotent subgroup M of G such that $\mathfrak{g}_{\geq 1} \subseteq \mathfrak{m} \subseteq \mathfrak{g}_{\geq 2}$ and $2 \dim \mathfrak{m} = \dim G \cdot f$.
- 3. Moment map: restriction map $\mu : \mathfrak{g}^* \to \mathfrak{m}^*, \xi \mapsto \xi|_{\mathfrak{m}}$.
- 4. $\overline{\chi} \coloneqq \chi|_{\mathfrak{m}}$ is a character of \mathfrak{m} .

- 1. Poisson variety $\mathfrak{g}^{\ast}.$
- 2. Construct some unipotent subgroup M of G such that $\mathfrak{g}_{\geq 1} \subseteq \mathfrak{m} \subseteq \mathfrak{g}_{\geq 2}$ and $2 \dim \mathfrak{m} = \dim G \cdot f$.
- 3. Moment map: restriction map $\mu: \mathfrak{g}^* \to \mathfrak{m}^*, \xi \mapsto \xi|_{\mathfrak{m}}.$
- 4. $\overline{\chi} \coloneqq \chi|_{\mathfrak{m}}$ is a character of \mathfrak{m} .

Theorem (Gan-Ginzburg)

The coadjoint action induces an isomorphism $M \times S_f \cong \mu^{-1}(\overline{\chi})$.

- 1. Poisson variety $\mathfrak{g}^{\ast}.$
- 2. Construct some unipotent subgroup M of G such that $\mathfrak{g}_{\geq 1} \subseteq \mathfrak{m} \subseteq \mathfrak{g}_{\geq 2}$ and $2 \dim \mathfrak{m} = \dim G \cdot f$.
- 3. Moment map: restriction map $\mu : \mathfrak{g}^* \to \mathfrak{m}^*, \xi \mapsto \xi|_{\mathfrak{m}}.$
- 4. $\overline{\chi} \coloneqq \chi|_{\mathfrak{m}}$ is a character of \mathfrak{m} .

Theorem (Gan-Ginzburg)

The coadjoint action induces an isomorphism $M \times S_f \cong \mu^{-1}(\overline{\chi})$. Hence: $S_f \cong \mu^{-1}(\overline{\chi})/M$.

- 1. Poisson variety $\mathfrak{g}^{\ast}.$
- 2. Construct some unipotent subgroup M of G such that $\mathfrak{g}_{\geq 1} \subseteq \mathfrak{m} \subseteq \mathfrak{g}_{\geq 2}$ and $2 \dim \mathfrak{m} = \dim G \cdot f$.
- 3. Moment map: restriction map $\mu : \mathfrak{g}^* \to \mathfrak{m}^*, \xi \mapsto \xi|_{\mathfrak{m}}$.
- 4. $\overline{\chi} \coloneqq \chi|_{\mathfrak{m}}$ is a character of \mathfrak{m} .

Theorem (Gan-Ginzburg)

The coadjoint action induces an isomorphism $M \times S_f \cong \mu^{-1}(\overline{\chi})$. Hence: $S_f \cong \mu^{-1}(\overline{\chi})/M$.

Particular case (Kostant)

Assume f is regular, i.e. dense orbit in the nilpotent cone.

- 1. Poisson variety $\mathfrak{g}^{\ast}.$
- 2. Construct some unipotent subgroup M of G such that $\mathfrak{g}_{\geq 1} \subseteq \mathfrak{m} \subseteq \mathfrak{g}_{\geq 2}$ and $2 \dim \mathfrak{m} = \dim G \cdot f$.
- 3. Moment map: restriction map $\mu: \mathfrak{g}^* \to \mathfrak{m}^*, \xi \mapsto \xi|_{\mathfrak{m}}.$
- 4. $\overline{\chi} \coloneqq \chi|_{\mathfrak{m}}$ is a character of \mathfrak{m} .

Theorem (Gan-Ginzburg)

The coadjoint action induces an isomorphism $M \times S_f \cong \mu^{-1}(\overline{\chi})$. Hence: $S_f \cong \mu^{-1}(\overline{\chi})/M$.

Particular case (Kostant)

Assume f is regular, i.e. dénse orbit in the nilpotent cone. Then, M is the unipotent radical in a Borel subgroup of G.

- 1. Poisson variety $\mathfrak{g}^{\ast}.$
- 2. Construct some unipotent subgroup M of G such that $\mathfrak{g}_{\geq 1} \subseteq \mathfrak{m} \subseteq \mathfrak{g}_{\geq 2}$ and $2 \dim \mathfrak{m} = \dim G \cdot f$.
- 3. Moment map: restriction map $\mu : \mathfrak{g}^* \to \mathfrak{m}^*, \xi \mapsto \xi|_{\mathfrak{m}}.$
- 4. $\overline{\chi} \coloneqq \chi|_{\mathfrak{m}}$ is a character of \mathfrak{m} .

Theorem (Gan-Ginzburg)

The coadjoint action induces an isomorphism $M \times S_f \cong \mu^{-1}(\overline{\chi})$. Hence: $S_f \cong \mu^{-1}(\overline{\chi})/M$.

Particular case (Kostant)

Assume f is regular, i.e. dense orbit in the nilpotent cone. Then, M is the unipotent radical in a Borel subgroup of G. In fact, $\mathbf{C}[S_f] \cong \mathbf{C}[\mathfrak{g}^*]^G$ (Poisson center).

- 1. Poisson variety $\mathfrak{g}^{\ast}.$
- 2. Construct some unipotent subgroup M of G such that $\mathfrak{g}_{\geq 1} \subseteq \mathfrak{m} \subseteq \mathfrak{g}_{\geq 2}$ and $2 \dim \mathfrak{m} = \dim G \cdot f$.
- 3. Moment map: restriction map $\mu : \mathfrak{g}^* \to \mathfrak{m}^*, \xi \mapsto \xi|_{\mathfrak{m}}$.
- 4. $\overline{\chi} \coloneqq \chi|_{\mathfrak{m}}$ is a character of \mathfrak{m} .

Theorem (Gan-Ginzburg)

The coadjoint action induces an isomorphism $M \times S_f \cong \mu^{-1}(\overline{\chi})$. Hence: $S_f \cong \mu^{-1}(\overline{\chi})/M$.

Particular case (Kostant)

Assume f is regular, i.e. dense orbit in the nilpotent cone. Then, M is the unipotent radical in a Borel subgroup of G. In fact, $\mathbf{C}[S_f] \cong \mathbf{C}[\mathfrak{g}^*]^G$ (Poisson center).

Example of the particular case

- 1. Poisson variety $\mathfrak{g}^{\ast}.$
- 2. Construct some unipotent subgroup M of G such that $\mathfrak{g}_{\geq 1} \subseteq \mathfrak{m} \subseteq \mathfrak{g}_{\geq 2}$ and $2 \dim \mathfrak{m} = \dim G \cdot f$.
- 3. Moment map: restriction map $\mu : \mathfrak{g}^* \to \mathfrak{m}^*, \xi \mapsto \xi|_{\mathfrak{m}}.$
- 4. $\overline{\chi} \coloneqq \chi|_{\mathfrak{m}}$ is a character of \mathfrak{m} .

Theorem (Gan-Ginzburg)

The coadjoint action induces an isomorphism $M \times S_f \cong \mu^{-1}(\overline{\chi})$. Hence: $S_f \cong \mu^{-1}(\overline{\chi})/M$.

Particular case (Kostant)

Assume f is regular, i.e. dense orbit in the nilpotent cone. Then, M is the unipotent radical in a Borel subgroup of G. In fact, $\mathbf{C}[S_f] \cong \mathbf{C}[\mathfrak{g}^*]^G$ (Poisson center).

Example of the particular case

 $\mathfrak{g} = \mathfrak{sl}_n$ and $f = E_{2,1} + E_{3,2} + \cdots + E_{n,n-1}$.

Reduction by stages

Reduction by stages

 (Marsden, Misiolek, Ortega, Perlmutter and Rati 2007) General framework for reduction by stages.

Reduction by stages

- (Marsden, Misiolek, Ortega, Perlmutter and Rati 2007) General framework for reduction by stages.
- $f_1, f_2 \in \mathfrak{g}$ two nilpotent elements.
- (Marsden, Misiolek, Ortega, Perlmutter and Rati 2007) General framework for reduction by stages.
- $f_1, f_2 \in \mathfrak{g}$ two nilpotent elements.
 - Slodowy slices $S_i \coloneqq S_{f_i}$ and linear form $\chi_i \coloneqq \kappa_0(f_i)$.
 - Unipotent groups M_i, moment maps μ_i : g^{*} → m_i^{*} and characters \$\overline{\chi}\$_i such that S_i ≅ μ_i⁻¹(\$\overline{\chi}\$_i)/M_i.

- (Marsden, Misiolek, Ortega, Perlmutter and Rati 2007) General framework for reduction by stages.
- $f_1, f_2 \in \mathfrak{g}$ two nilpotent elements.
 - Slodowy slices $S_i \coloneqq S_{f_i}$ and linear form $\chi_i \coloneqq \kappa_0(f_i)$.
 - Unipotent groups M_i, moment maps μ_i : g^{*} → m_i^{*} and characters \$\overline{\chi}\$_i such that S_i ≅ μ_i⁻¹(\$\overline{\chi}\$_i)/M_i.

Theorem (Genra-J. 2022)

- (Marsden, Misiolek, Ortega, Perlmutter and Rati 2007) General framework for reduction by stages.
- $f_1, f_2 \in \mathfrak{g}$ two nilpotent elements.
 - Slodowy slices $S_i \coloneqq S_{f_i}$ and linear form $\chi_i \coloneqq \kappa_0(f_i)$.
 - Unipotent groups M_i, moment maps μ_i : g^{*} → m_i^{*} and characters χ̄_i such that S_i ≃ μ_i⁻¹(χ̄_i)/M_i.

Theorem (Genra-J. 2022)

Assume the following conditions:

$$M_2 = M_1 \rtimes M_0, \quad f_2 - f_1, \mathfrak{m}_0 \subseteq \mathfrak{g}_0^{(1)}, \quad f_1 \in \mathfrak{g}_{-2}^{(2)}.$$

- (Marsden, Misiolek, Ortega, Perlmutter and Rati 2007) General framework for reduction by stages.
- $f_1, f_2 \in \mathfrak{g}$ two nilpotent elements.
 - Slodowy slices $S_i \coloneqq S_{f_i}$ and linear form $\chi_i \coloneqq \kappa_0(f_i)$.
 - Unipotent groups M_i, moment maps μ_i : g^{*} → m_i^{*} and characters \$\overline{\chi}\$_i such that S_i ≅ μ_i⁻¹(\$\overline{\chi}\$_i)/M_i.

Theorem (Genra-J. 2022)

Assume the following conditions:

$$M_2 = M_1 \rtimes M_0, \quad f_2 - f_1, \mathfrak{m}_0 \subseteq \mathfrak{g}_0^{(1)}, \quad f_1 \in \mathfrak{g}_{-2}^{(2)}.$$

Then there is an induced Hamiltonian action $M_0 \curvearrowright S_1 \stackrel{\mu_0}{\longrightarrow} \mathfrak{m}_0^*$

- (Marsden, Misiolek, Ortega, Perlmutter and Rati 2007) General framework for reduction by stages.
- $f_1, f_2 \in \mathfrak{g}$ two nilpotent elements.
 - Slodowy slices $S_i \coloneqq S_{f_i}$ and linear form $\chi_i \coloneqq \kappa_0(f_i)$.
 - Unipotent groups M_i, moment maps μ_i : g^{*} → m_i^{*} and characters \$\overline{\chi}\$_i such that S_i ≅ μ_i⁻¹(\$\overline{\chi}\$_i)/M_i.

Theorem (Genra-J. 2022)

Assume the following conditions:

$$M_2 = M_1 \rtimes M_0, \quad f_2 - f_1, \mathfrak{m}_0 \subseteq \mathfrak{g}_0^{(1)}, \quad f_1 \in \mathfrak{g}_{-2}^{(2)}.$$

Then there is an induced Hamiltonian action $M_0 \cap S_1 \xrightarrow{\mu_0} \mathfrak{m}_0^*$ such that $\mu_0^{-1}(\overline{\chi}_0)/M_0 \cong \mu_2^{-1}(\overline{\chi}_2)/M_2$, where $\overline{\chi}_0 \coloneqq \chi_2|_{\mathfrak{m}_0}$.

- (Marsden, Misiolek, Ortega, Perlmutter and Rati 2007) General framework for reduction by stages.
- $f_1, f_2 \in \mathfrak{g}$ two nilpotent elements.
 - Slodowy slices $S_i \coloneqq S_{f_i}$ and linear form $\chi_i \coloneqq \kappa_0(f_i)$.
 - Unipotent groups M_i, moment maps μ_i : g^{*} → m_i^{*} and characters χ̄_i such that S_i ≅ μ_i⁻¹(χ̄_i)/M_i.

Theorem (Genra-J. 2022)

Assume the following conditions:

$$M_2 = M_1 \rtimes M_0, \quad f_2 - f_1, \mathfrak{m}_0 \subseteq \mathfrak{g}_0^{(1)}, \quad f_1 \in \mathfrak{g}_{-2}^{(2)}.$$

Then there is an induced Hamiltonian action $M_0 \cap S_1 \xrightarrow{\mu_0} \mathfrak{m}_0^*$ such that $\mu_0^{-1}(\overline{\chi}_0)/M_0 \cong \mu_2^{-1}(\overline{\chi}_2)/M_2$, where $\overline{\chi}_0 \coloneqq \chi_2|_{\mathfrak{m}_0}$.

Key point

There is an isomorphism $M_1 \times \mu_0^{-1}(\overline{\chi}_0) \cong \mu_2^{-1}(\overline{\chi}_2)$.

- (Marsden, Misiolek, Ortega, Perlmutter and Rati 2007) General framework for reduction by stages.
- $f_1, f_2 \in \mathfrak{g}$ two nilpotent elements.
 - Slodowy slices $S_i \coloneqq S_{f_i}$ and linear form $\chi_i \coloneqq \kappa_0(f_i)$.
 - Unipotent groups M_i, moment maps μ_i : g^{*} → m_i^{*} and characters \$\overline{\chi}\$_i such that S_i ≅ μ_i⁻¹(\$\overline{\chi}\$_i)/M_i.

Theorem (Genra-J. 2022)

Assume the following conditions:

$$M_2 = M_1 \rtimes M_0, \quad f_2 - f_1, \mathfrak{m}_0 \subseteq \mathfrak{g}_0^{(1)}, \quad f_1 \in \mathfrak{g}_{-2}^{(2)}.$$

Then there is an induced Hamiltonian action $M_0 \cap S_1 \xrightarrow{\mu_0} \mathfrak{m}_0^*$ such that $\mu_0^{-1}(\overline{\chi}_0)/M_0 \cong \mu_2^{-1}(\overline{\chi}_2)/M_2$, where $\overline{\chi}_0 \coloneqq \chi_2|_{\mathfrak{m}_0}$.

Key point

There is an isomorphism $M_1 \times \mu_0^{-1}(\overline{\chi}_0) \cong \mu_2^{-1}(\overline{\chi}_2)$.

Remark

The conditions imply $G \cdot f_1 \subseteq \overline{G \cdot f_2}$.

g := sl_n: nilpotent orbits indexed by partitions of n.

- g := sl_n: nilpotent orbits indexed by partitions of n.
- For 0 ≤ ℓ ≤ n, the nilpotent orbit O_ℓ corresponds to the partition (ℓ, 1^{n-ℓ}).

- g := sl_n: nilpotent orbits indexed by partitions of n.
- For 0 ≤ ℓ ≤ n, the nilpotent orbit O_ℓ corresponds to the partition (ℓ, 1^{n-ℓ}).

Proposition (Genra-J. 2022) Pick two nilpotent elements $f_i \in \mathbf{O}_{\ell_i}$ for $\ell_1 < \ell_2$. Then the reduction by stages theorem holds:

- g := sl_n: nilpotent orbits indexed by partitions of n.
- For 0 ≤ ℓ ≤ n, the nilpotent orbit O_ℓ corresponds to the partition (ℓ, 1^{n-ℓ}).

Other examples in classical and exceptional types.

Reduction by stages for finite W-algebra

 (PBW Theorem) 𝒴(𝔅) quantises C[𝔅*]: gr 𝒴(𝔅) ≅ C[𝔅*] as Poisson algebras.

• (PBW Theorem) $\mathscr{U}(\mathfrak{g})$ quantises $C[\mathfrak{g}^*]$: gr $\mathscr{U}(\mathfrak{g}) \cong C[\mathfrak{g}^*]$ as Poisson algebras.

Definition: finite W-algebra (Premet) $\mathscr{U}(\mathfrak{g}, f) := (\mathscr{U}(\mathfrak{g})/I)^{\mathrm{ad}(\mathfrak{m})}$ (quantum Hamiltonian reduction), where *I* is the left ideal spanned by $a - \chi(a), a \in \mathfrak{m}$.

• (PBW Theorem) $\mathscr{U}(\mathfrak{g})$ quantises $C[\mathfrak{g}^*]$: gr $\mathscr{U}(\mathfrak{g}) \cong C[\mathfrak{g}^*]$ as Poisson algebras.

Definition: finite W-algebra (Premet) $\mathscr{U}(\mathfrak{g}, f) := (\mathscr{U}(\mathfrak{g})/I)^{\mathrm{ad}(\mathfrak{m})}$ (quantum Hamiltonian reduction), where I is the left ideal spanned by $a - \chi(a)$, $a \in \mathfrak{m}$.

• There is a natural filtration on $\mathscr{U}(\mathfrak{g}, f)$ (Kazhdan filtration).

• (PBW Theorem) $\mathscr{U}(\mathfrak{g})$ quantises $C[\mathfrak{g}^*]$: gr $\mathscr{U}(\mathfrak{g}) \cong C[\mathfrak{g}^*]$ as Poisson algebras.

Definition: finite W-algebra (Premet) $\mathscr{U}(\mathfrak{g}, f) := (\mathscr{U}(\mathfrak{g})/I)^{\mathrm{ad}(\mathfrak{m})}$ (quantum Hamiltonian reduction), where I is the left ideal spanned by $a - \chi(a)$, $a \in \mathfrak{m}$.

- There is a natural filtration on $\mathscr{U}(\mathfrak{g}, f)$ (Kazhdan filtration).
- gr $\mathscr{U}(\mathfrak{g}, f)$ is Poisson.

• (PBW Theorem) $\mathscr{U}(\mathfrak{g})$ quantises $C[\mathfrak{g}^*]$: gr $\mathscr{U}(\mathfrak{g}) \cong C[\mathfrak{g}^*]$ as Poisson algebras.

Definition: finite W-algebra (Premet) $\mathscr{U}(\mathfrak{g}, f) := (\mathscr{U}(\mathfrak{g})/I)^{\mathrm{ad}(\mathfrak{m})}$ (quantum Hamiltonian reduction), where I is the left ideal spanned by $a - \chi(a)$, $a \in \mathfrak{m}$.

- There is a natural filtration on $\mathscr{U}(\mathfrak{g}, f)$ (Kazhdan filtration).
- gr $\mathscr{U}(\mathfrak{g}, f)$ is Poisson.

Theorem (Gan-Ginzburg) $\mathscr{U}(\mathfrak{g}, f)$ quantises $\mathbf{C}[S_f]$: gr $\mathscr{U}(\mathfrak{g}, f) \cong \mathbf{C}[S_f]$.

$$M_2 = M_1 \rtimes M_0, \quad f_2 - f_1, \mathfrak{m}_0 \subseteq \mathfrak{g}_0^{(1)}, \quad f_1 \in \mathfrak{g}_{-2}^{(2)}.$$

$$M_2 = M_1 \rtimes M_0, \quad f_2 - f_1, \mathfrak{m}_0 \subseteq \mathfrak{g}_0^{(1)}, \quad f_1 \in \mathfrak{g}_{-2}^{(2)}.$$

Then, one can take the reduction of $\mathscr{U}(\mathfrak{g}, f_1)$: $(\mathscr{U}(\mathfrak{g}, f_1)/I_0)^{\mathsf{ad}(\mathfrak{m}_0)}$,

$$M_2 = M_1 \rtimes M_0, \quad f_2 - f_1, \mathfrak{m}_0 \subseteq \mathfrak{g}_0^{(1)}, \quad f_1 \in \mathfrak{g}_{-2}^{(2)}.$$

Then, one can take the reduction of $\mathscr{U}(\mathfrak{g}, f_1)$: $(\mathscr{U}(\mathfrak{g}, f_1)/I_0)^{\mathsf{ad}(\mathfrak{m}_0)}$, where I_0 is the left ideal of $\mathscr{U}(\mathfrak{g}, f_1)$ spanned by $\mathbf{a} - \chi_2(\mathbf{a})$, for $\mathbf{a} \in \mathfrak{m}_0$,

$$M_2 = M_1 \rtimes M_0, \quad f_2 - f_1, \mathfrak{m}_0 \subseteq \mathfrak{g}_0^{(1)}, \quad f_1 \in \mathfrak{g}_{-2}^{(2)}.$$

Then, one can take the reduction of $\mathscr{U}(\mathfrak{g}, f_1)$: $(\mathscr{U}(\mathfrak{g}, f_1)/I_0)^{\mathrm{ad}(\mathfrak{m}_0)}$, where I_0 is the left ideal of $\mathscr{U}(\mathfrak{g}, f_1)$ spanned by $a - \chi_2(a)$, for $a \in \mathfrak{m}_0$, and there is an algebra isomorphism

$$(\mathscr{U}(\mathfrak{g}, f_1)/I_0)^{\mathsf{ad}(\mathfrak{m}_0)} \overset{\sim}{\longrightarrow} \mathscr{U}(\mathfrak{g}, f_2).$$

Quantisation and chiralisation of Kraft and Procesi's Theorems

• $\mathfrak{g} \coloneqq \mathfrak{gl}_n$ (reductive is ok!).

- $\mathfrak{g} \coloneqq \mathfrak{gl}_n$ (reductive is ok!).
- f_2 associated to partition $(\lambda_1 \ge \cdots \ge \lambda_k, \underline{\lambda}_0)$.

- $\mathfrak{g} \coloneqq \mathfrak{gl}_n$ (reductive is ok!).
- f_2 associated to partition $(\lambda_1 \ge \cdots \ge \lambda_k, \underline{\lambda}_0)$.
- $\underline{\lambda}_0$ partition of $n_0 < n$: $f_0 \in \mathfrak{gl}_{n_0}$ associated to partition $\underline{\lambda}_0$.

- $\mathfrak{g} \coloneqq \mathfrak{gl}_n$ (reductive is ok!).
- f_2 associated to partition $(\lambda_1 \ge \cdots \ge \lambda_k, \underline{\lambda}_0)$.
- $\underline{\lambda}_0$ partition of $n_0 < n$: $f_0 \in \mathfrak{gl}_{n_0}$ associated to partition $\underline{\lambda}_0$.
- f_1 associated to partition $(\lambda_1, \ldots, \lambda_k, 1^{n_0})$.

- $\mathfrak{g} \coloneqq \mathfrak{gl}_n$ (reductive is ok!).
- f_2 associated to partition $(\lambda_1 \ge \cdots \ge \lambda_k, \underline{\lambda}_0)$.
- $\underline{\lambda}_0$ partition of $n_0 < n$: $f_0 \in \mathfrak{gl}_{n_0}$ associated to partition $\underline{\lambda}_0$.
- f_1 associated to partition $(\lambda_1, \ldots, \lambda_k, 1^{n_0})$.

Theorem (Premet)

There is a Hamiltonian action $\operatorname{GL}_{n_0} \curvearrowright S_{f_1} \xrightarrow{\mu} \mathfrak{gl}_{n_0}^*$.

- $\mathfrak{g} \coloneqq \mathfrak{gl}_n$ (reductive is ok!).
- f_2 associated to partition $(\lambda_1 \ge \cdots \ge \lambda_k, \underline{\lambda}_0)$.
- $\underline{\lambda}_0$ partition of $n_0 < n$: $f_0 \in \mathfrak{gl}_{n_0}$ associated to partition $\underline{\lambda}_0$.
- f_1 associated to partition $(\lambda_1, \ldots, \lambda_k, 1^{n_0})$.

Theorem (Premet)

There is a Hamiltonian action $\operatorname{GL}_{n_0} \curvearrowright S_{f_1} \xrightarrow{\mu} \mathfrak{gl}_{n_0}^*$.

Pick M_0 unipotent subgroup of GL_{n_0} corresponding to $f_0 \in \mathfrak{gl}_{n_0}$.

- $\mathfrak{g} \coloneqq \mathfrak{gl}_n$ (reductive is ok!).
- f_2 associated to partition $(\lambda_1 \ge \cdots \ge \lambda_k, \underline{\lambda}_0)$.
- $\underline{\lambda}_0$ partition of $n_0 < n$: $f_0 \in \mathfrak{gl}_{n_0}$ associated to partition $\underline{\lambda}_0$.
- f_1 associated to partition $(\lambda_1, \ldots, \lambda_k, 1^{n_0})$.

Theorem (Premet)

There is a Hamiltonian action $\operatorname{GL}_{n_0} \curvearrowright S_{f_1} \xrightarrow{\mu} \mathfrak{gl}_{n_0}^*$.

Pick M_0 unipotent subgroup of GL_{n_0} corresponding to $f_0 \in \mathfrak{gl}_{n_0}$. **Theorem (J.)**

- $\mathfrak{g} \coloneqq \mathfrak{gl}_n$ (reductive is ok!).
- f_2 associated to partition $(\lambda_1 \ge \cdots \ge \lambda_k, \underline{\lambda}_0)$.
- $\underline{\lambda}_0$ partition of $n_0 < n$: $f_0 \in \mathfrak{gl}_{n_0}$ associated to partition $\underline{\lambda}_0$.
- f_1 associated to partition $(\lambda_1, \ldots, \lambda_k, 1^{n_0})$.

Theorem (Premet)

There is a Hamiltonian action $\operatorname{GL}_{n_0} \curvearrowright S_{f_1} \xrightarrow{\mu} \mathfrak{gl}_{n_0}^*$.

Pick M_0 unipotent subgroup of GL_{n_0} corresponding to $f_0 \in \mathfrak{gl}_{n_0}$.

Theorem (J.)

1. The Hamiltonian reduction of S_{f_1} with respect to the action of M_0 is S_{f_2} .

- $\mathfrak{g} \coloneqq \mathfrak{gl}_n$ (reductive is ok!).
- f_2 associated to partition $(\lambda_1 \ge \cdots \ge \lambda_k, \underline{\lambda}_0)$.
- $\underline{\lambda}_0$ partition of $n_0 < n$: $f_0 \in \mathfrak{gl}_{n_0}$ associated to partition $\underline{\lambda}_0$.
- f_1 associated to partition $(\lambda_1, \ldots, \lambda_k, 1^{n_0})$.

Theorem (Premet)

There is a Hamiltonian action $\operatorname{GL}_{n_0} \curvearrowright S_{f_1} \xrightarrow{\mu} \mathfrak{gl}_{n_0}^*$.

Pick M_0 unipotent subgroup of GL_{n_0} corresponding to $f_0 \in \mathfrak{gl}_{n_0}$.

Theorem (J.)

- 1. The Hamiltonian reduction of S_{f_1} with respect to the action of M_0 is S_{f_2} .
- 2. One gets a (dominant) Poisson map: $S_{f_2} \longrightarrow S_{f_0}$.

- $\mathfrak{g} \coloneqq \mathfrak{gl}_n$ (reductive is ok!).
- f_2 associated to partition $(\lambda_1 \ge \cdots \ge \lambda_k, \underline{\lambda}_0)$.
- $\underline{\lambda}_0$ partition of $n_0 < n$: $f_0 \in \mathfrak{gl}_{n_0}$ associated to partition $\underline{\lambda}_0$.
- f_1 associated to partition $(\lambda_1, \ldots, \lambda_k, 1^{n_0})$.

Theorem (Premet)

There is a Hamiltonian action $\operatorname{GL}_{n_0} \curvearrowright S_{f_1} \xrightarrow{\mu} \mathfrak{gl}_{n_0}^*$.

Pick M_0 unipotent subgroup of GL_{n_0} corresponding to $f_0 \in \mathfrak{gl}_{n_0}$.

Theorem (J.)

- 1. The Hamiltonian reduction of S_{f_1} with respect to the action of M_0 is S_{f_2} .
- 2. One gets a (dominant) Poisson map: $S_{f_2} \longrightarrow S_{f_0}$.

Remark
Row elimination in type A

- $\mathfrak{g} \coloneqq \mathfrak{gl}_n$ (reductive is ok!).
- f_2 associated to partition $(\lambda_1 \ge \cdots \ge \lambda_k, \underline{\lambda}_0)$.
- $\underline{\lambda}_0$ partition of $n_0 < n$: $f_0 \in \mathfrak{gl}_{n_0}$ associated to partition $\underline{\lambda}_0$.
- f_1 associated to partition $(\lambda_1, \ldots, \lambda_k, 1^{n_0})$.

Theorem (Premet)

There is a Hamiltonian action $\operatorname{GL}_{n_0} \curvearrowright S_{f_1} \xrightarrow{\mu} \mathfrak{gl}_{n_0}^*$.

Pick M_0 unipotent subgroup of GL_{n_0} corresponding to $f_0 \in \mathfrak{gl}_{n_0}$.

Theorem (J.)

- 1. The Hamiltonian reduction of S_{f_1} with respect to the action of M_0 is S_{f_2} .
- 2. One gets a (dominant) Poisson map: $S_{f_2} \longrightarrow S_{f_0}$.

Remark

Reinterpretation of the row elimination rule of Kraft and Procesi. Rule used to classify minimal degenerations mentioned in Gwyn's talk.

Quantisation and chiralisation

- $\mathfrak{g} := \mathfrak{gl}_n$.
- f_2 associated to partition $(\lambda_1, \ldots, \lambda_k, \underline{\lambda}_0)$.
- $\underline{\lambda}_0$ partition of $n_0 < n$: $f_0 \in \mathfrak{gl}_{n_0}$ associated to partition $\underline{\lambda}_0$.
- f_1 associated to partition $(\lambda_1, \ldots, \lambda_k, 1^{n_0})$.

- $\mathfrak{g} := \mathfrak{gl}_n$.
- f_2 associated to partition $(\lambda_1, \ldots, \lambda_k, \underline{\lambda}_0)$.
- $\underline{\lambda}_0$ partition of $n_0 < n$: $f_0 \in \mathfrak{gl}_{n_0}$ associated to partition $\underline{\lambda}_0$.
- f_1 associated to partition $(\lambda_1, \ldots, \lambda_k, 1^{n_0})$.

- $\mathfrak{g} := \mathfrak{gl}_n$.
- f_2 associated to partition $(\lambda_1, \ldots, \lambda_k, \underline{\lambda}_0)$.
- $\underline{\lambda}_0$ partition of $n_0 < n$: $f_0 \in \mathfrak{gl}_{n_0}$ associated to partition $\underline{\lambda}_0$.
- f_1 associated to partition $(\lambda_1, \ldots, \lambda_k, 1^{n_0})$.

1. $\mathscr{U}(\mathfrak{gl}_n, f_1)$ is the Hamiltonian reduction of $\mathscr{U}(\mathfrak{gl}_n, f_2)$.

- $\mathfrak{g} := \mathfrak{gl}_n$.
- f_2 associated to partition $(\lambda_1, \ldots, \lambda_k, \underline{\lambda}_0)$.
- $\underline{\lambda}_0$ partition of $n_0 < n$: $f_0 \in \mathfrak{gl}_{n_0}$ associated to partition $\underline{\lambda}_0$.
- f_1 associated to partition $(\lambda_1, \ldots, \lambda_k, 1^{n_0})$.

- 1. $\mathscr{U}(\mathfrak{gl}_n, f_1)$ is the Hamiltonian reduction of $\mathscr{U}(\mathfrak{gl}_n, f_2)$.
- 2. There is an embedding $\mathscr{U}(\mathfrak{gl}_{n_0}, f_0) \hookrightarrow \mathscr{U}(\mathfrak{gl}_n, f_2)$.

- $\mathfrak{g} := \mathfrak{gl}_n$.
- f_2 associated to partition $(\lambda_1, \ldots, \lambda_k, \underline{\lambda}_0)$.
- $\underline{\lambda}_0$ partition of $n_0 < n$: $f_0 \in \mathfrak{gl}_{n_0}$ associated to partition $\underline{\lambda}_0$.
- f_1 associated to partition $(\lambda_1, \ldots, \lambda_k, 1^{n_0})$.

- 1. $\mathscr{U}(\mathfrak{gl}_n, f_1)$ is the Hamiltonian reduction of $\mathscr{U}(\mathfrak{gl}_n, f_2)$.
- 2. There is an embedding $\mathscr{U}(\mathfrak{gl}_{n_0}, f_0) \hookrightarrow \mathscr{U}(\mathfrak{gl}_n, f_2)$.

Conjecture ★

- $\mathfrak{g} := \mathfrak{gl}_n$.
- f_2 associated to partition $(\lambda_1, \ldots, \lambda_k, \underline{\lambda}_0)$.
- $\underline{\lambda}_0$ partition of $n_0 < n$: $f_0 \in \mathfrak{gl}_{n_0}$ associated to partition $\underline{\lambda}_0$.
- f_1 associated to partition $(\lambda_1, \ldots, \lambda_k, 1^{n_0})$.

- 1. $\mathscr{U}(\mathfrak{gl}_n, f_1)$ is the Hamiltonian reduction of $\mathscr{U}(\mathfrak{gl}_n, f_2)$.
- 2. There is an embedding $\mathscr{U}(\mathfrak{gl}_{n_0}, f_0) \hookrightarrow \mathscr{U}(\mathfrak{gl}_n, f_2)$.

Conjecture ★

1. $\mathscr{W}^{\kappa}(\mathfrak{gl}_n, f_1)$ is the Hamiltonian reduction of $\mathscr{W}^{\kappa}(\mathfrak{gl}_n, f_2)$.

- $\mathfrak{g} := \mathfrak{gl}_n$.
- f_2 associated to partition $(\lambda_1, \ldots, \lambda_k, \underline{\lambda}_0)$.
- $\underline{\lambda}_0$ partition of $n_0 < n$: $f_0 \in \mathfrak{gl}_{n_0}$ associated to partition $\underline{\lambda}_0$.
- f_1 associated to partition $(\lambda_1, \ldots, \lambda_k, 1^{n_0})$.

- 1. $\mathscr{U}(\mathfrak{gl}_n, f_1)$ is the Hamiltonian reduction of $\mathscr{U}(\mathfrak{gl}_n, f_2)$.
- 2. There is an embedding $\mathscr{U}(\mathfrak{gl}_{n_0}, f_0) \hookrightarrow \mathscr{U}(\mathfrak{gl}_n, f_2)$.

Conjecture ★

- 1. $\mathscr{W}^{\kappa}(\mathfrak{gl}_n, f_1)$ is the Hamiltonian reduction of $\mathscr{W}^{\kappa}(\mathfrak{gl}_n, f_2)$.
- 2. There is an embedding $\mathscr{W}^{\kappa'}(\mathfrak{gl}_{n_0}, f_0) \longrightarrow \mathscr{W}^{\kappa}(\mathfrak{gl}_n, f_2).$

Thank you for your attention!