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What is invariant theory?

▶ k is any field, V = alg. variety, G = alg. group, consider an
algebraic action of G on V ;

▶ induced action on the coordinate ring k[V ]:
(g · f )(v) = f (g−1 · v);

▶ invariant algebra:
k[V ]G := {f ∈ k[V ] : g · f = f for all g ∈ G};

▶ ex.: if G = Sn and V = kn, then the coordinate ring of V is
k[x1, ..., xn] and the elementary symmetric polynomials si
(where i ≤ n) are invariants, moreover k[V ]G = k[s1, ..., sn];

▶ question: is k[V ]G finitely generated as an algebra over k?



History

▶ Hilbert (1890): the invariant algebras of linearly reductive
groups (for ex. of the classical groups) are finitely generated
k-algebras;

▶ Hilbert’s fourteenth problem: is every invariant algebra finitely
generated over k?

▶ NO, counterexample by Nagata (1959);
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Separating sets vs generating sets

▶ even if k[V ]G is finitely generated in general it is a hard
computational task to determine a generating set (involves
Gröbner basis computation);

▶ we can investigate invariants from another point of view: by
their separating properties;

▶ instead of seeking for generating (finite) subsets of k[V ]G we
consider sets of invariants which have exactly the same
separating capabilities as the whole invariant algebra;

▶ every invariant algebra has a finite separating subset;



Definition

▶ let S ⊂ k[V ]G , we say that elements u, v ∈ V can be
separated by S if there exists an invariant f ∈ S such that
f (u) ̸= f (v);

▶ we call S a separating set if for any u, v ∈ V we have: if
there exists an invariant f ∈ k[V ]G with f (u) ̸= f (v), then
there exists an element g ∈ S with g(u) ̸= g(v);

▶ if S ⊂ k[V ]G is a generating set then S is a separating set;
▶ we say that a separating set

(i) is minimal wrt. size if it is of minimal size among the
separating sets;

(ii) is minimal wrt. inclusion if no proper subset is separating;
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Kemper, Lopatin, Reimers

▶ [KLR22] is the first paper to systematically deal with
separating invariants over finite fields;

▶ main result: they give an explicit formula for the number γ
of elements of a separating set of minimal size when G is a
matrix group over the finite field Fq, namely if k is the
number of G -orbits then γ = γ(q, k) := ⌈logq k⌉;

▶ fix: G = Sn and V = Fn where F = Fq is a finite field of
q = pt elements;

▶ they proved that for F = F2 the set

S = {s2r : 0 ≤ r ≤ ⌊log2 n⌋}

form a separating set of minimal size in k[x1, ..., xn]
Sn ;



Over arbitrary finite fields

▶ we have managed to extend this result to arbitrary finite fields
Fq in [DM23]:

Theorem 1
The elementary symmetric polynomials sm with m ∈ [n]q form a
separating subset in Fq[x1, ..., xn]

Sn , where

[n]q = {jpk : j ∈ {1, ..., q − 1}, k ∈ Z≥0, jpk ≤ n}.

▶ we shall remark that the p = q case was solved before in a
different context by Aberth in 1964 [Ab64];



An equivalent reformulation of Theorem 1

▶ there is an equivalent reformulation of Theorem 1 :

Theorem 1
Let f , g ∈ Fq[x ] be monic polynomials of degree n, such that both
f and g split as a product of root factors over Fq. Assume that for
all j ∈ [n]q, the degree n− j coefficients of f and g coincide. Then
we have f = g .



Minimality

▶ the separating set given in Theorem 1 is minimal with respect
to inclusion for q = 3, 4, 5 wirth arbitrary n and for q = 7 with
log7 n − ⌊log7 n⌋ < log7 5 or log7 n − ⌊log7 n⌋ ≥ log7 6;

▶ when n = 5 in {si : i = 1, 2, 3, 4} ⊂ F7[x1, ..., x5]
S5 is minimal

wrt. size (γ = logq(
(q−1+k

k

)
) = log7 462 = 4);

▶ denote by dp(n) the difference | [n]p | and the number of
elements in a separating set of minimal size (i.e. γ) in
Fp[x1, ..., xn], then we have dp(n) ≤ p − 2 meaning that if n is
large compared to p then the separating set given by Theorem
1 is not much bigger than a separating set of minimal size;
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Key ingredients of the proof

▶ we can easily characterize Sn-orbits: for v ∈ Fn
q the orbit

Sn · v can be described with a map O : Fq → Z≥0 such that
O(a) =| {j : vj = a} |, this is a bijection and we will refere to
Sn-orbits as such kind of maps;

▶ we shall write sk(O) for the value of the elementary
symmetric polynomial sk ∈ Fq[x1, ..., xn] on the vectors in Fn

q

that belong to the orbit labelled by O;



Key ingredients of the proof

▶ we will need the following lemmas:

Lemma 2
Let O,P be Sn-orbits and assume that

sj(O) = sj(P) for j = 1, 2, ..., q − 1.

Then O(a) ≡ P(a) mod p for all a ∈ Fq.

Lemma 3
Suppose that for O,P and for some k we have O(a) ≡ P(a) mod
pk for all a ∈ Fq and sjpk (O) = sjpk (P) for j = 1, 2, ..., q− 1. Then

O(a) ≡ P(a) mod pk+1 for all a ∈ Fq.



Outline of the proof

▶ let O,P be arbitrary Sn-orbits and suppose that for all
j ∈ [n]q we have sj(O) = sj(P);

▶ by Lemma 2 and Lemma 3 using an inductive argument on k
we get that O(a) ≡ P(a) mod pk for all a ∈ Fq and k;

▶ thus for large enough k we get that O = P;
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Thank you for your attention!
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