Symmetric polynomials over finite fields

B. Miklósi¹

joint work with M. Domokos²

¹Eötvös Loránd University Department of Algebra and Number Theory ²Alfréd Rényi Institute of Mathematics

June 06, 2024

Classical invariant theory

Separating invariants

Separating invariants over finite fields

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Classical invariant theory

Separating invariants

Separating invariants over finite fields

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

What is invariant theory?

- k is any field, V = alg. variety, G = alg. group, consider an algebraic action of G on V;
- ▶ induced action on the coordinate ring k[V]: (g · f)(v) = f(g⁻¹ · v);
- invariant algebra: $k[V]^G := \{f \in k[V] : g \cdot f = f \text{ for all } g \in G\};$
- ex.: if G = S_n and V = kⁿ, then the coordinate ring of V is k[x₁,...,x_n] and the elementary symmetric polynomials s_i (where i ≤ n) are invariants, moreover k[V]^G = k[s₁,...,s_n];
- question: is $k[V]^G$ finitely generated as an algebra over k?

History

- Hilbert (1890): the invariant algebras of linearly reductive groups (for ex. of the classical groups) are finitely generated k-algebras;
- Hilbert's fourteenth problem: is every invariant algebra finitely generated over k?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▶ NO, counterexample by Nagata (1959);

Classical invariant theory

Separating invariants

Separating invariants over finite fields

Outline of the proof

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Separating sets vs generating sets

- even if k[V]^G is finitely generated in general it is a hard computational task to determine a generating set (involves Gröbner basis computation);
- we can investigate invariants from another point of view: by their separating properties;
- instead of seeking for generating (finite) subsets of k[V]^G we consider sets of invariants which have exactly the same separating capabilities as the whole invariant algebra;

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

every invariant algebra has a finite separating subset;

Definition

- let S ⊂ k[V]^G, we say that elements u, v ∈ V can be separated by S if there exists an invariant f ∈ S such that f(u) ≠ f(v);
- we call S a separating set if for any u, v ∈ V we have: if there exists an invariant f ∈ k[V]^G with f(u) ≠ f(v), then there exists an element g ∈ S with g(u) ≠ g(v);
- if $S \subset k[V]^G$ is a generating set then S is a separating set;
- we say that a separating set
 - (i) is minimal wrt. size if it is of minimal size among the separating sets;
 - (ii) is minimal wrt. inclusion if no proper subset is separating;

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Classical invariant theory

Separating invariants

Separating invariants over finite fields

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Kemper, Lopatin, Reimers

- [KLR22] is the first paper to systematically deal with separating invariants over finite fields;
- main result: they give an explicit formula for the number γ of elements of a separating set of minimal size when G is a matrix group over the finite field F_q, namely if k is the number of G-orbits then γ = γ(q, k) := [log_q k];
- Fix: G = S_n and V = ℝⁿ where ℝ = ℝ_q is a finite field of q = p^t elements;
- they proved that for $\mathbb{F} = \mathbb{F}_2$ the set

$$S = \{s_{2^r} : 0 \le r \le \lfloor \log_2 n \rfloor\}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

form a separating set of minimal size in $k[x_1, ..., x_n]^{S_n}$;

Over arbitrary finite fields

we have managed to extend this result to arbitrary finite fields F_q in [DM23]:

Theorem 1

The elementary symmetric polynomials s_m with $m \in [n]_q$ form a separating subset in $\mathbb{F}_q[x_1, ..., x_n]^{S_n}$, where

$$[n]_q = \{ jp^k : j \in \{1, ..., q-1\}, \ k \in \mathbb{Z}_{\geq 0}, \ jp^k \leq n \}.$$

we shall remark that the p = q case was solved before in a different context by Aberth in 1964 [Ab64];

An equivalent reformulation of Theorem 1

there is an equivalent reformulation of Theorem 1:

Theorem 1

Let $f, g \in \mathbb{F}_q[x]$ be monic polynomials of degree n, such that both f and g split as a product of root factors over \mathbb{F}_q . Assume that for all $j \in [n]_q$, the degree n - j coefficients of f and g coincide. Then we have f = g.

Minimality

- the separating set given in *Theorem 1* is minimal with respect to inclusion for q = 3, 4, 5 wirth arbitrary n and for q = 7 with log₇ n − ⌊log₇ n ⌋ < log₇ 5 or log₇ n − ⌊log₇ n ⌋ ≥ log₇ 6;
- ▶ when n = 5 in $\{s_i : i = 1, 2, 3, 4\} \subset \mathbb{F}_7[x_1, ..., x_5]^{S_5}$ is minimal wrt. size $(\gamma = \log_q(\binom{q-1+k}{k}) = \log_7 462 = 4)$;

Classical invariant theory

Separating invariants

Separating invariants over finite fields

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Key ingredients of the proof

- ▶ we can easily characterize S_n -orbits: for $v \in \mathbb{F}_q^n$ the orbit $S_n \cdot v$ can be described with a map $\mathcal{O} : \mathbb{F}_q \to \mathbb{Z}_{\geq 0}$ such that $\mathcal{O}(a) = |\{j : v_j = a\}|$, this is a bijection and we will refere to S_n -orbits as such kind of maps;
- We shall write s_k(O) for the value of the elementary symmetric polynomial s_k ∈ 𝔽_q[x₁,...,x_n] on the vectors in 𝔽ⁿ_q that belong to the orbit labelled by O;

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Key ingredients of the proof

we will need the following lemmas:

Lemma 2 Let \mathcal{O}, \mathcal{P} be S_n -orbits and assume that

$$s_j(\mathcal{O})=s_j(\mathcal{P})$$
 for $j=1,2,...,q-1.$

Then $\mathcal{O}(a) \equiv \mathcal{P}(a) \mod p$ for all $a \in \mathbb{F}_q$.

Lemma 3

Suppose that for \mathcal{O}, \mathcal{P} and for some k we have $\mathcal{O}(a) \equiv \mathcal{P}(a) \mod p^k$ for all $a \in \mathbb{F}_q$ and $s_{jp^k}(\mathcal{O}) = s_{jp^k}(\mathcal{P})$ for j = 1, 2, ..., q - 1. Then $\mathcal{O}(a) \equiv \mathcal{P}(a) \mod p^{k+1}$ for all $a \in \mathbb{F}_q$.

Outline of the proof

- If the set of the
- by Lemma 2 and Lemma 3 using an inductive argument on k we get that O(a) ≡ P(a) mod p^k for all a ∈ F_q and k;

• thus for large enough k we get that $\mathcal{O} = \mathcal{P}$;

Bibliography

0

O. Aberth.

The elementary symmetric functions in a finite field of prime order. *Illinois J. Math. 8 (1) 132 - 138, 1964.*

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

M. Domokos, B.Miklósi.

Symmetric polynomials over finite fields. Finite Fields and Their Applications 89 (2023) 102224.

G. Kemper, A. Lopatin, F. Reimers.Separating invariants over finite fields.J. Pure Appl. Algebra 226 (2022) 106904.

Thank you for your attention!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ