The Procesi bundle over the Γ-fixed points of the punctual Hilbert scheme in \mathbb{C}^{2}

Raphaël Paegelow (joint work with Gwyn Bellamy)
IMAG, University of Montpellier
June 6, 2024

I - Main players

I - Main players

Take $n \geq 1$.

Take $n \geq 1$.

- $\mathcal{H}_{n}:=\operatorname{Hilb}_{n}\left(\mathbb{C}^{2}\right)=\{I \subset \mathbb{C}[x, y] \mid I$ is an ideal and $\operatorname{dim}(\mathbb{C}[x, y] / I)=n\}$

I - Main players

Take $n \geq 1$.

- $\mathcal{H}_{n}:=\operatorname{Hilb}_{n}\left(\mathbb{C}^{2}\right)=\{I \subset \mathbb{C}[x, y] \mid I$ is an ideal and $\operatorname{dim}(\mathbb{C}[x, y] / I)=n\}$
- [Fo68, Thm. 2.9]: \mathcal{H}_{n} is a smooth algebraic variety of dimension $2 n$.

I - Main players

Take $n \geq 1$.

- $\mathcal{H}_{n}:=\operatorname{Hilb}_{n}\left(\mathbb{C}^{2}\right)=\{I \subset \mathbb{C}[x, y] \mid I$ is an ideal and $\operatorname{dim}(\mathbb{C}[x, y] / I)=n\}$
- [Fo68, Thm. 2.9]: \mathcal{H}_{n} is a smooth algebraic variety of dimension $2 n$.
- Hilbert-Chow morphism

$$
\begin{array}{rlcc}
\sigma_{n}: & \rightarrow & \left(\mathbb{C}^{2}\right)^{n} / \mathfrak{S}_{n} \\
I & \mapsto & \sum_{p \in V(I)} \operatorname{dim}\left((\mathbb{C}[x, y] / I)_{p}\right)[p]^{(1)}
\end{array}
$$

(1). $[p]$ denotes the class of p in $\left(\mathbb{C}^{2}\right)^{n} / \mathfrak{S}_{n}$

I - Main players

- $\mathcal{X}_{n}:=$ reduced scheme associated with $\mathcal{H}_{n} \times\left(\mathbb{C}^{2}\right)^{n} / \mathfrak{S}_{n}\left(\mathbb{C}^{2}\right)^{n} \xrightarrow{f_{n}}\left(\mathbb{C}^{2}\right)^{n}$

I - Main players

- $\mathcal{X}_{n}:=$ reduced scheme associated with $\mathcal{H}_{n} \times\left(\mathbb{C}^{2}\right)^{n} / \mathfrak{S}_{n}\left(\mathbb{C}^{2}\right)^{n} \xrightarrow{f_{n}}\left(\mathbb{C}^{2}\right)^{n}$

- \mathcal{X}_{n} is an algebraic variety.

I - Main players

- $\mathcal{X}_{n}:=$ reduced scheme associated with $\mathcal{H}_{n} \times\left(\mathbb{C}^{2}\right)^{n} / \mathfrak{G}_{n}\left(\mathbb{C}^{2}\right)^{n} \xrightarrow{f_{n}}\left(\mathbb{C}^{2}\right)^{n}$

- \mathcal{X}_{n} is an algebraic variety.
- [H03, Thm. 5.2.1] The morphism $\rho_{n}: \mathcal{X}_{n} \rightarrow \mathcal{H}_{n}$ is flat (and by construction finite of rank $n!$).

I - Main players

- $\mathcal{X}_{n}:=$ reduced scheme associated with $\mathcal{H}_{n} \times\left(\mathbb{C}^{2}\right)^{n} / \mathfrak{S}_{n}\left(\mathbb{C}^{2}\right)^{n} \xrightarrow{f_{n}}\left(\mathbb{C}^{2}\right)^{n}$

- \mathcal{X}_{n} is an algebraic variety.
- [H03, Thm. 5.2.1] The morphism $\rho_{n}: \mathcal{X}_{n} \rightarrow \mathcal{H}_{n}$ is flat (and by construction finite of rank $n!$).
- $\mathscr{P}^{n}:=\rho_{n_{*}} \mathcal{O}_{\mathcal{X}_{n}}$ is a locally free sheaf over \mathcal{H}_{n} of rank $n!\rightsquigarrow$ the Procesi bundle.

Let $\mathrm{GL}_{2}(\mathbb{C})$ act naturally on \mathbb{C}^{2}

I - Main players

I - Main players

$$
\mathrm{GL}_{2}(\mathbb{C}) \curvearrowright \mathcal{H}_{n}
$$

Let $\mathrm{GL}_{2}(\mathbb{C})$ act naturally on \mathbb{C}^{2} and \mathfrak{S}_{n} act trivially on \mathcal{H}_{n}.

$$
\mathrm{GL}_{2}(\mathbb{C}) \curvearrowright\left(\mathbb{C}^{2}\right)^{n}
$$

The morphisms $\rho_{n}, \sigma_{n}, \pi_{n}$ and f_{n} are all $\left(\mathfrak{S}_{n} \times \mathrm{GL}_{2}(\mathbb{C})\right)$-equivariant.


```
I-Main players
```

- Let Γ be a finite subgroup of $\mathrm{SL}_{2}(\mathbb{C})$ of order $\ell(A D E)$.

I - Main players

- Let Γ be a finite subgroup of $\mathrm{SL}_{2}(\mathbb{C})$ of order $\ell(A D E)$.

$$
\text { If } \mathcal{H}_{n}^{\Gamma, \chi}:=\left\{I \in \mathcal{H}_{n}^{\Gamma} \mid \operatorname{Tr}(\mathbb{C}[x, y] / I)=\chi\right\}
$$

I - Main players

- Let Γ be a finite subgroup of $\mathrm{SL}_{2}(\mathbb{C})$ of order $\ell(A D E)$.

$$
\begin{aligned}
& \text { If } \mathcal{H}_{n}^{\Gamma, \chi}:=\left\{I \in \mathcal{H}_{n}^{\Gamma} \mid \operatorname{Tr}(\mathbb{C}[x, y] / I)=\chi\right\} \text {, and } \\
& \text { if } \mathcal{A}_{\Gamma}^{n}:=\left\{\text { all characters } \chi \text { of } \Gamma \text { of degree } n \text { such that } \mathcal{H}_{n}^{\Gamma, \chi} \neq \emptyset\right\} \text {, }
\end{aligned}
$$

I - Main players

- Let Γ be a finite subgroup of $\mathrm{SL}_{2}(\mathbb{C})$ of order $\ell(A D E)$.

$$
\text { If } \mathcal{H}_{n}^{\Gamma, \chi}:=\left\{I \in \mathcal{H}_{n}^{\Gamma} \mid \operatorname{Tr}(\mathbb{C}[x, y] / I)=\chi\right\} \text {, and }
$$

$$
\text { if } \mathcal{A}_{\Gamma}^{n}:=\left\{\text { all characters } \chi \text { of } \Gamma \text { of degree } n \text { such that } \mathcal{H}_{n}^{\Gamma, \chi} \neq \emptyset\right\} \text {, then }
$$

$$
\mathcal{H}_{n}^{\Gamma}=\coprod_{\chi \in \mathcal{A}_{\Gamma}^{n}} \mathcal{H}_{n}^{\Gamma, x}
$$

I - Main players

Take $\chi \in \mathcal{A}_{\Gamma}^{n}$.

I - Main players

Take $\chi \in \mathcal{A}_{\Gamma}^{n}$.
$\mathscr{P}_{\mid \mathcal{H}_{n}^{\Gamma, \chi}}^{n} \rightsquigarrow$ a vector bundle over $\mathcal{H}_{n}^{\Gamma, \chi}$ whose fibers are $\left(\mathfrak{S}_{n} \times \Gamma\right)$-modules.

Take $\chi \in \mathcal{A}_{\Gamma}^{n}$.
$\underset{\mid \mathcal{H}_{n}^{\Gamma, \chi}}{n} \rightsquigarrow$ a vector bundle over $\mathcal{H}_{n}^{\Gamma, \chi}$ whose fibers are $\left(\mathfrak{S}_{n} \times \Gamma\right)$-modules.
Our Goal :

Study the fiber $\mathscr{P}_{\mid I}^{n}$ as a $\left(\mathfrak{S}_{n} \times \Gamma\right)$-module, $\quad \forall I \in \mathcal{H}_{n}^{\Gamma, \chi}$

II - Reduction theorem

II - Reduction theorem

Fix $\chi \in \mathcal{A}_{\Gamma}^{n}$.

II - Reduction theorem

Fix $\chi \in \mathcal{A}_{\Gamma}^{n}$.
$r_{\chi}:=\frac{1}{2} \operatorname{dim}\left(\mathcal{H}_{n}^{\Gamma, \chi}\right)$
(2). $\operatorname{reg}(\Gamma)$ denotes the character of the regular representation of Γ

II - Reduction theorem

```
Fix \(\chi \in \mathcal{A}_{\Gamma}^{n}\).
\(r_{\chi}:=\frac{1}{2} \operatorname{dim}\left(\mathcal{H}_{n}^{\Gamma, \chi}\right)\) and \(\chi_{0}:=\chi-r_{\chi} \operatorname{reg}(\Gamma)^{(2)}\)
```

(2). $\operatorname{reg}(\Gamma)$ denotes the character of the regular representation of Γ

II - Reduction theorem

```
Fix \(\chi \in \mathcal{A}_{\Gamma}^{n}\).
\(r_{\chi}:=\frac{1}{2} \operatorname{dim}\left(\mathcal{H}_{n}^{\Gamma, \chi}\right)\) and \(\chi_{0}:=\chi-r_{\chi} \operatorname{reg}(\Gamma)^{(2)}\)
\(g_{\Gamma}:=\) degree of \(\chi_{0}\)
```

(2). $\operatorname{reg}(\Gamma)$ denotes the character of the regular representation of Γ

II - Reduction theorem

Fix $\chi \in \mathcal{A}_{\Gamma}^{n}$.
$r_{\chi}:=\frac{1}{2} \operatorname{dim}\left(\mathcal{H}_{n}^{\Gamma, \chi}\right)$ and $\chi_{0}:=\chi-r_{\chi} \operatorname{reg}(\Gamma)^{(2)}$
$g_{\Gamma}:=$ degree of χ_{0}
The I.C. $\mathcal{H}_{g_{\Gamma}}^{\Gamma, \chi_{0}}$ is zero-dimensional
(2). $\operatorname{reg}(\Gamma)$ denotes the character of the regular representation of Γ

II - Reduction theorem

Fix $\chi \in \mathcal{A}_{\Gamma}^{n}$.
$r_{\chi}:=\frac{1}{2} \operatorname{dim}\left(\mathcal{H}_{n}^{\Gamma, \chi}\right)$ and $\chi_{0}:=\chi-r_{\chi} \operatorname{reg}(\Gamma)^{(2)}$
$g_{\Gamma}:=$ degree of χ_{0}
The I.C. $\mathcal{H}_{g_{\Gamma}}^{\Gamma, \chi_{0}}$ is zero-dimensional $\rightsquigarrow \mathcal{H}_{g_{\Gamma}}^{\Gamma, \chi_{0}}=\left\{I_{\chi_{0}}\right\}$.
(2). $\operatorname{reg}(\Gamma)$ denotes the character of the regular representation of Γ

II - Reduction theorem

Fix $\chi \in \mathcal{A}_{\Gamma}^{n}$.
$r_{\chi}:=\frac{1}{2} \operatorname{dim}\left(\mathcal{H}_{n}^{\Gamma, \chi}\right)$ and $\chi_{0}:=\chi-r_{\chi} \operatorname{reg}(\Gamma)^{(2)}$
$g_{\Gamma}:=$ degree of χ_{0}
The I.C. $\mathcal{H}_{g_{\Gamma}}^{\Gamma, \chi_{0}}$ is zero-dimensional $\rightsquigarrow \mathcal{H}_{g_{\Gamma}}^{\Gamma, \chi_{0}}=\left\{I_{\chi_{0}}\right\}$.
Take $\left(p_{1}, \ldots, p_{r_{\chi}}\right) \in\left(\mathbb{C}^{2} \backslash\{(0,0)\}\right)^{r_{\chi}}$ such that

$$
\forall(i, j) \in \llbracket 1, r_{\chi} \rrbracket^{2}, i \neq j \Rightarrow \Gamma p_{i} \cap \Gamma p_{j}=\emptyset
$$

(2). $\operatorname{reg}(\Gamma)$ denotes the character of the regular representation of Γ

II - Reduction theorem

Fix $\chi \in \mathcal{A}_{\Gamma}^{n}$.
$r_{\chi}:=\frac{1}{2} \operatorname{dim}\left(\mathcal{H}_{n}^{\Gamma, \chi}\right)$ and $\chi_{0}:=\chi-r_{\chi} \operatorname{reg}(\Gamma)^{(2)}$
$g_{\Gamma}:=$ degree of χ_{0}
The I.C. $\mathcal{H}_{g_{\Gamma}}^{\Gamma, \chi_{0}}$ is zero-dimensional $\rightsquigarrow \mathcal{H}_{g_{\Gamma}}^{\Gamma, \chi_{0}}=\left\{I_{\chi_{0}}\right\}$.
Take $\left(p_{1}, \ldots, p_{r_{\chi}}\right) \in\left(\mathbb{C}^{2} \backslash\{(0,0)\}\right)^{r_{\chi}}$ such that

$$
\forall(i, j) \in \llbracket 1, r_{\chi} \rrbracket^{2}, i \neq j \Rightarrow \Gamma p_{i} \cap \Gamma p_{j}=\emptyset
$$

$$
q:=\left(\Gamma p_{1}, \ldots, \Gamma p_{r_{\chi}}\right) \in\left(\mathbb{C}^{2}\right)^{r_{\chi} \ell}
$$

(2). $\operatorname{reg}(\Gamma)$ denotes the character of the regular representation of Γ

II - Reduction theorem

Fix $\chi \in \mathcal{A}_{\Gamma}^{n}$.
$r_{\chi}:=\frac{1}{2} \operatorname{dim}\left(\mathcal{H}_{n}^{\Gamma, \chi}\right)$ and $\chi_{0}:=\chi-r_{\chi} \operatorname{reg}(\Gamma)^{(2)}$
$g_{\Gamma}:=$ degree of χ_{0}
The I.C. $\mathcal{H}_{g_{\Gamma}}^{\Gamma, \chi_{0}}$ is zero-dimensional $\rightsquigarrow \mathcal{H}_{g_{\Gamma}}^{\Gamma, \chi_{0}}=\left\{I_{\chi_{0}}\right\}$.
Take $\left(p_{1}, \ldots, p_{r_{\chi}}\right) \in\left(\mathbb{C}^{2} \backslash\{(0,0)\}\right)^{r_{\chi}}$ such that

$$
\forall(i, j) \in \llbracket 1, r_{\chi} \rrbracket^{2}, i \neq j \Rightarrow \Gamma p_{i} \cap \Gamma p_{j}=\emptyset
$$

$$
\begin{aligned}
& q:=\left(\Gamma p_{1}, \ldots, \Gamma p_{r_{\chi}}\right) \in\left(\mathbb{C}^{2}\right)^{r_{\chi} \ell} \\
& p:=(0, q) \in\left(\mathbb{C}^{2}\right)^{n}
\end{aligned}
$$

(2). $\operatorname{reg}(\Gamma)$ denotes the character of the regular representation of Γ

II - Reduction theorem

Fix $\chi \in \mathcal{A}_{\Gamma}^{n}$.
$r_{\chi}:=\frac{1}{2} \operatorname{dim}\left(\mathcal{H}_{n}^{\Gamma, \chi}\right)$ and $\chi_{0}:=\chi-r_{\chi} \operatorname{reg}(\Gamma)^{(2)}$
$g_{\Gamma}:=$ degree of χ_{0}
The I.C. $\mathcal{H}_{g_{\Gamma}}^{\Gamma, \chi_{0}}$ is zero-dimensional $\rightsquigarrow \mathcal{H}_{g_{\Gamma}}^{\Gamma, \chi_{0}}=\left\{I_{\chi_{0}}\right\}$.
Take $\left(p_{1}, \ldots, p_{r_{\chi}}\right) \in\left(\mathbb{C}^{2} \backslash\{(0,0)\}\right)^{r_{\chi}}$ such that

$$
\forall(i, j) \in \llbracket 1, r_{\chi} \rrbracket^{2}, i \neq j \Rightarrow \Gamma p_{i} \cap \Gamma p_{j}=\emptyset
$$

$q:=\left(\Gamma p_{1}, \ldots, \Gamma p_{r_{\chi}}\right) \in\left(\mathbb{C}^{2}\right)^{r_{\chi} \ell}$
$p:=(0, q) \in\left(\mathbb{C}^{2}\right)^{n}$
$S_{p}:=$ stabilizer of p in $\mathfrak{S}_{n} \times \Gamma$.
(2). $\operatorname{reg}(\Gamma)$ denotes the character of the regular representation of Γ

II - Reduction theorem

Theorem

There exists an isomorphism $\mp: S_{p} \xrightarrow{\sim} \mathfrak{S}_{g_{\Gamma}} \times \Gamma$ which endows $\mathscr{P}_{\mid I_{\chi_{0}}}^{\mathrm{g}_{\Gamma}}$ with a S_{p}-module structure, such that for each $I \in \mathcal{H}_{n}^{\Gamma, \chi}$,

$$
\left[\mathscr{P}_{\mid I}^{n}\right]_{\mathfrak{S}_{n} \times \Gamma}=\left[\operatorname{Ind}_{S_{p}}^{\mathfrak{S}_{n} \times \Gamma}\left(\mathscr{P}_{\mid I_{\chi_{0}}}^{\mathrm{g} \mathrm{\Gamma}}\right)\right]_{\mathfrak{S}_{n} \times \Gamma} .
$$

III - Type A \& Combinatorics

III - Type A \& Combinatorics

III - Type A \& Combinatorics
$\mathbb{T}_{1}:=$ maximal diagonal torus of $\mathrm{SL}_{2}(\mathbb{C})$.

III - Type A \& Combinatorics

For example if $\lambda=(3,2) \vdash 5$

Then $I_{(3,2)}=\left\langle x^{3}, x^{2} y, y^{2}\right\rangle \in \mathcal{H}_{5}^{\mathbb{T}_{1}}$.

III - Type A \& Combinatorics

$$
\text { For example if } \lambda=(3,2) \vdash 5
$$

Then $I_{(3,2)}=\left\langle x^{3}, x^{2} y, y^{2}\right\rangle \in \mathcal{H}_{5}^{\mathbb{T}_{1}}$.

Fix $\ell \geq 1$.

III - Type A \& Combinatorics

$$
\text { For example if } \lambda=(3,2) \vdash 5
$$

Then $I_{(3,2)}=\left\langle x^{3}, x^{2} y, y^{2}\right\rangle \in \mathcal{H}_{5}^{\mathbb{T}_{1}}$.

Fix $\ell \geq 1$.
ζ_{ℓ} : a primitive root of unity.

III - Type A \& Combinatorics

$$
\text { For example if } \lambda=(3,2) \vdash 5
$$

$\mathbb{T}_{1}:=$ maximal diagonal torus of $\mathrm{SL}_{2}(\mathbb{C})$.
$\mathcal{H}_{n}^{\mathbb{T}_{1}}$ are parametrized by partitions of size n.

Then $I_{(3,2)}=\left\langle x^{3}, x^{2} y, y^{2}\right\rangle \in \mathcal{H}_{5}^{\mathbb{T}_{1}}$.

Fix $\ell \geq 1$.
ζ_{ℓ} : a primitive root of unity.
$\Gamma=\mu_{\ell}<\mathbb{T}_{1}$ generated by $\omega_{\ell}=\operatorname{diag}\left(\zeta_{\ell}, \zeta_{\ell}^{-1}\right)$

III - Type A \& Combinatorics

For example if $\lambda=(3,2) \vdash 5$

Then $I_{(3,2)}=\left\langle x^{3}, x^{2} y, y^{2}\right\rangle \in \mathcal{H}_{5}^{\mathbb{T}_{1}}$.

Fix $\ell \geq 1$.
ζ_{ℓ} : a primitive root of unity.
$\Gamma=\mu_{\ell}<\mathbb{T}_{1}$ generated by $\omega_{\ell}=\operatorname{diag}\left(\zeta_{\ell}, \zeta_{\ell}^{-1}\right) \quad$ and $\quad \tau_{\ell}: \begin{array}{lll}\mu_{\ell} & \rightarrow \mathbb{C}^{\times} \\ \omega_{\ell} & \mapsto & \zeta_{\ell}\end{array}$.

III - Type A \& Combinatorics

Take $\lambda \vdash n$.

Take $\lambda \vdash n$.
γ_{ℓ} : the ℓ-core of $\lambda^{(3)}$
(3). the partition obtained from λ by removing all hooks of length ℓ.

Take $\lambda \vdash n$.
γ_{ℓ} : the ℓ-core of $\lambda^{(3)}$
g_{ℓ} : the size of γ_{ℓ}
(3). the partition obtained from λ by removing all hooks of length ℓ.

Take $\lambda \vdash n$.
γ_{ℓ} : the ℓ-core of $\lambda^{(3)}$
g_{ℓ} : the size of γ_{ℓ}
r_{ℓ} : the number of ℓ-hooks to remove from λ to obtain $\gamma_{\ell} \quad\left(=\frac{n-g_{\ell}}{\ell}\right)$
(3). the partition obtained from λ by removing all hooks of length ℓ.

III - Type A \& Combinatorics

Take $\lambda \vdash n$.
γ_{ℓ} : the ℓ-core of $\lambda^{(3)}$
g_{ℓ} : the size of γ_{ℓ}
r_{ℓ} : the number of ℓ-hooks to remove from λ to obtain $\gamma_{\ell} \quad\left(=\frac{n-g_{\ell}}{\ell}\right)$
$w_{\ell, n}:=$

$$
\left(\mathrm{g}_{\ell}+1, \ldots, \mathrm{~g}_{\ell}+\ell\right) \ldots(n-\ell+1, \ldots, n) \in \mathfrak{S}_{r_{\ell} \ell}
$$

(3). the partition obtained from λ by removing all hooks of length ℓ.

III - Type A \& Combinatorics

Take $\lambda \vdash n$.
γ_{ℓ} : the ℓ-core of $\lambda^{(3)}$
g_{ℓ} : the size of γ_{ℓ}
r_{ℓ} : the number of ℓ-hooks to remove from λ to obtain $\gamma_{\ell} \quad\left(=\frac{n-g_{\ell}}{\ell}\right)$
$w_{\ell, n}:=$

$$
\left(\mathrm{g}_{\ell}+1, \ldots, \mathrm{~g}_{\ell}+\ell\right) \ldots(n-\ell+1, \ldots, n) \in \mathfrak{S}_{r_{\ell} \ell}
$$

$C_{\ell, n}:=\left\langle w_{\ell, n}\right\rangle$
(3). the partition obtained from λ by removing all hooks of length ℓ.

III - Type A \& Combinatorics

Take $\lambda \vdash n$.
γ_{ℓ} : the ℓ-core of $\lambda^{(3)}$
g_{ℓ} : the size of γ_{ℓ}
r_{ℓ} : the number of ℓ-hooks to remove from λ to obtain $\gamma_{\ell} \quad\left(=\frac{n-g_{\ell}}{\ell}\right)$
$w_{\ell, n}:=$

$$
\left(\mathrm{g}_{\ell}+1, \ldots, \mathrm{~g}_{\ell}+\ell\right) \ldots(n-\ell+1, \ldots, n) \in \mathfrak{S}_{r_{\ell} \ell}
$$

$C_{\ell, n}:=\left\langle w_{\ell, n}\right\rangle$ and $\theta_{\ell}: C_{\ell, n} \rightarrow \mathbb{C}^{\times}$s.t. $\theta_{\ell}\left(w_{\ell, n}\right)=\zeta_{\ell}$.
(3). the partition obtained from λ by removing all hooks of length ℓ.

III - Type A \& Combinatorics

Take $\lambda \vdash n$.
γ_{ℓ} : the ℓ-core of $\lambda^{(3)}$
g_{ℓ} : the size of γ_{ℓ}
r_{ℓ} : the number of ℓ-hooks to remove from λ to obtain $\gamma_{\ell} \quad\left(=\frac{n-g_{\ell}}{\ell}\right)$
$w_{\ell, n}:=$

$$
\left(\mathrm{g}_{\ell}+1, \ldots, \mathrm{~g}_{\ell}+\ell\right) \ldots(n-\ell+1, \ldots, n) \in \mathfrak{S}_{r_{\ell} \ell}
$$

$C_{\ell, n}:=\left\langle w_{\ell, n}\right\rangle$ and $\theta_{\ell}: C_{\ell, n} \rightarrow \mathbb{C}^{\times}$s.t. $\theta_{\ell}\left(w_{\ell, n}\right)=\zeta_{\ell}$.
$W_{\ell, n}^{g_{\ell}}:=\mathfrak{S}_{g_{\ell}} \times C_{\ell, n}<\mathfrak{S}_{n}$
(3). the partition obtained from λ by removing all hooks of length ℓ.

III - Type A \& Combinatorics

If M is a $\left(\mathfrak{S}_{n} \times \mu_{\ell}\right)$-module,

$$
M_{i}^{\ell}:=\operatorname{Hom}_{\mu_{\ell}}\left(\tau_{\ell}^{i}, M\right), \quad \forall i \in \llbracket 0, \ell-1 \rrbracket
$$

III - Type A \& Combinatorics

If M is a $\left(\mathfrak{S}_{n} \times \mu_{\ell}\right)$-module,

$$
M_{i}^{\ell}:=\operatorname{Hom}_{\mu_{\ell}}\left(\tau_{\ell}^{i}, M\right), \quad \forall i \in \llbracket 0, \ell-1 \rrbracket
$$

Corollary

For each partition λ of n and each $i \in \llbracket 0, \ell-1 \rrbracket$, one has the following equality :

$$
\left[\left(\mathscr{P}_{\mid I_{\lambda}}^{n}\right)_{i}^{\ell}\right]_{\mathfrak{S}_{n}}=\sum_{j=0}^{\ell-1}\left[\operatorname{Ind}_{W_{\ell, n}^{\mathrm{E}}}^{\mathfrak{S}_{n}}\left(\left(\mathscr{P}_{\mid I_{\gamma_{\ell}}}^{\mathrm{g} \ell}\right)_{j}^{\ell} \boxtimes \theta_{\ell}^{i-j}\right)\right]_{\mathfrak{S}_{n}}
$$

Thank you for your attention !

References

[Fo68] J. Fogarty. "Algebraic families on an algebraic surface". In : Amer. J. Math 90 (1968), p. 511-521.
[H03] M. Haiman. "Combinatorics, Symmetric functions, and Hilbert schemes". In : Current developments in mathematics (juill. 2003). doi :
10.4310/CDM.2002.v2002.n1.a2.

