Che Proce $$\Gamma$-fixed point punctual Hilbert scheme in <math display="inline">\mathbb{C}^2$

Raphaël Paegelow (joint work with Gwyn Bellamy)

IMAG, University of Montpellier

June 6, 2024

Take $n \geq 1$.

Take $n \geq 1$.

•
$$\mathcal{H}_n := \operatorname{Hilb}_n(\mathbb{C}^2) = \{I \subset \mathbb{C}[x, y] | I \text{ is an ideal and } \dim(\mathbb{C}[x, y]/I) = n\}$$

Take $n \geq 1$.

•
$$\mathcal{H}_n := \operatorname{Hilb}_n(\mathbb{C}^2) = \{I \subset \mathbb{C}[x, y] | I \text{ is an ideal and } \dim(\mathbb{C}[x, y]/I) = n\}$$

▶ [Fo68, Thm. 2.9] : \mathcal{H}_n is a smooth algebraic variety of dimension 2n.

Take $n \geq 1$.

• $\mathcal{H}_n := \operatorname{Hilb}_n(\mathbb{C}^2) = \{I \subset \mathbb{C}[x, y] | I \text{ is an ideal and } \dim(\mathbb{C}[x, y]/I) = n\}$

- ▶ [Fo68, Thm. 2.9] : \mathcal{H}_n is a smooth algebraic variety of dimension 2n.
- ► Hilbert-Chow morphism

$$\sigma_n \colon \begin{array}{ccc} \mathcal{H}_n & \to & (\mathbb{C}^2)^n / \mathfrak{S}_n \\ I & \mapsto & \sum_{p \in V(I)} \dim \left((\mathbb{C}[x, y] / I)_p \right) [p]^{(1)} \end{array}$$

(1). [p] denotes the class of p in $\left(\mathbb{C}^2\right)^n/\mathfrak{S}_n$

• $\mathcal{X}_n := \text{reduced scheme associated with } \mathcal{H}_n \times_{(\mathbb{C}^2)^n / \mathfrak{S}_n} (\mathbb{C}^2)^n \xrightarrow{f_n} (\mathbb{C}^2)^n \xrightarrow{\int_{\pi_n}} \rho_n \downarrow^{\pi_n} \downarrow^{\pi_n} \downarrow^{\mathcal{H}_n} \xrightarrow{\mathcal{H}_n} (\mathbb{C}^2)^n / \mathfrak{S}_n$

- $\mathcal{X}_n := \text{reduced scheme associated with } \mathcal{H}_n \times_{(\mathbb{C}^2)^n / \mathfrak{S}_n} (\mathbb{C}^2)^n \xrightarrow{f_n} (\mathbb{C}^2)^n \xrightarrow{\int_{\pi_n}} \left(\begin{array}{c} \mathbb{C}^2 \\ & & \\ &$
 - \blacktriangleright \mathcal{X}_n is an algebraic variety.

- $\mathcal{X}_n := \text{reduced scheme associated with } \mathcal{H}_n \times_{(\mathbb{C}^2)^n / \mathfrak{S}_n} (\mathbb{C}^2)^n \xrightarrow{f_n} (\mathbb{C}^2)^n \xrightarrow{\rho_n} \downarrow^{\pi_n} \downarrow^{\pi_n} \downarrow^{\mathcal{H}_n} \xrightarrow{\mathcal{H}_n} (\mathbb{C}^2)^n / \mathfrak{S}_n$
 - \blacktriangleright \mathcal{X}_n is an algebraic variety.
 - ▶ [H03, Thm. 5.2.1] The morphism $\rho_n : \mathcal{X}_n \to \mathcal{H}_n$ is flat (and by construction finite of rank n!).

- $\mathcal{X}_n :=$ reduced scheme associated with $\mathcal{H}_n \times_{(\mathbb{C}^2)^n / \mathfrak{S}_n} (\mathbb{C}^2)^n \xrightarrow{f_n} (\mathbb{C}^2)^n \xrightarrow{f_n} (\mathbb{C}^2)^n \longrightarrow (\mathbb{C}^2)^n / \mathfrak{S}_n$ $\mathcal{H}_n \xrightarrow{\sigma_n} (\mathbb{C}^2)^n / \mathfrak{S}_n$
 - \blacktriangleright \mathcal{X}_n is an algebraic variety.
 - ▶ [H03, Thm. 5.2.1] The morphism $\rho_n : \mathcal{X}_n \to \mathcal{H}_n$ is flat (and by construction finite of rank n!).

• $\mathcal{P}^n := \rho_{n*} \mathcal{O}_{\mathcal{X}_n}$ is a locally free sheaf over \mathcal{H}_n of rank $n! \rightsquigarrow$ the Procesi bundle.

The morphisms ρ_n , σ_n , π_n and f_n are all $(\mathfrak{S}_n \times \mathrm{GL}_2(\mathbb{C}))$ -equivariant.

$$\begin{aligned} \mathcal{H}_n \times_{(\mathbb{C}^2)^n / \mathfrak{S}_n} (\mathbb{C}^2)^n & \xrightarrow{f_n} (\mathbb{C}^2)^n \\ \rho_n \bigg| & \downarrow^{\pi_n} \\ \mathcal{H}_n & \xrightarrow{\sigma_n} (\mathbb{C}^2)^n / \mathfrak{S}_n \end{aligned}$$

If
$$\mathcal{H}_n^{\Gamma,\chi} := \{I \in \mathcal{H}_n^{\Gamma} | \operatorname{Tr} (\mathbb{C}[x, y]/I) = \chi\}$$

If
$$\mathcal{H}_n^{\Gamma,\chi}:=\{I\in\mathcal{H}_n^{\Gamma}|\mathrm{Tr}\left(\mathbb{C}[x,y]/I
ight)=\chi\}$$
, and

if $\mathcal{A}^n_{\Gamma} := \{ \text{ all characters } \chi \text{ of } \Gamma \text{ of degree } n \text{ such that } \mathcal{H}^{\Gamma,\chi}_n \neq \emptyset \},\$

If
$$\mathcal{H}_n^{\Gamma,\chi}:=\{I\in\mathcal{H}_n^{\Gamma}|\mathrm{Tr}\left(\mathbb{C}[x,y]/I
ight)=\chi\}$$
, and

if $\mathcal{A}^n_{\Gamma} := \{ \text{ all characters } \chi \text{ of } \Gamma \text{ of degree } n \text{ such that } \mathcal{H}^{\Gamma,\chi}_n \neq \emptyset \}$, then

$$\boxed{\mathcal{H}_n^{\Gamma} = \coprod_{\chi \in \mathcal{A}_{\Gamma}^n} \mathcal{H}_n^{\Gamma,\chi}}$$

Take $\chi \in \mathcal{A}^n_{\Gamma}$.

Take $\chi \in \mathcal{A}^n_{\Gamma}$.

$\mathscr{P}^n_{|\mathcal{H}^{\Gamma,\chi}_n} \rightsquigarrow \text{ a vector bundle over } \mathcal{H}^{\Gamma,\chi}_n \text{ whose fibers are } (\mathfrak{S}_n \times \Gamma) \text{-modules}.$

Take $\chi \in \mathcal{A}^n_{\Gamma}$.

 $\mathscr{P}^{n}_{|\mathcal{H}^{\Gamma,\chi}_{n}} \rightsquigarrow \text{ a vector bundle over } \mathcal{H}^{\Gamma,\chi}_{n} \text{ whose fibers are } (\mathfrak{S}_{n} \times \Gamma)\text{-modules.}$

Our Goal :

Study the fiber $\mathscr{P}^n_{|I}$ as a $(\mathfrak{S}_n imes \Gamma)$ -module, $\forall I \in \mathcal{H}^{\Gamma,\chi}_n$

Fix $\chi \in \mathcal{A}^n_{\Gamma}$.

Fix
$$\chi \in \mathcal{A}_{\Gamma}^{n}$$
.
 $r_{\chi} := \frac{1}{2} \dim \left(\mathcal{H}_{n}^{\Gamma, \chi} \right)$

^{(2).} $\operatorname{reg}(\Gamma)$ denotes the character of the regular representation of Γ

Fix
$$\chi \in \mathcal{A}_{\Gamma}^{n}$$
.
 $r_{\chi} := \frac{1}{2} \dim \left(\mathcal{H}_{n}^{\Gamma, \chi} \right)$ and $\chi_{0} := \chi - r_{\chi} \operatorname{reg}(\Gamma)^{(2)}$

^{(2).} $\operatorname{reg}(\Gamma)$ denotes the character of the regular representation of Γ

Fix
$$\chi \in \mathcal{A}_{\Gamma}^{n}$$
.
 $r_{\chi} := \frac{1}{2} \operatorname{dim} \left(\mathcal{H}_{n}^{\Gamma, \chi} \right)$ and $\chi_{0} := \chi - r_{\chi} \operatorname{reg}(\Gamma)^{(2)}$
 $g_{\Gamma} := \text{degree of } \chi_{0}$

^{(2).} $\operatorname{reg}(\Gamma)$ denotes the character of the regular representation of Γ

Fix $\chi \in \mathcal{A}_{\Gamma}^{n}$. $r_{\chi} := \frac{1}{2} \operatorname{dim} \left(\mathcal{H}_{n}^{\Gamma, \chi} \right)$ and $\chi_{0} := \chi - r_{\chi} \operatorname{reg}(\Gamma)^{(2)}$ $g_{\Gamma} :=$ degree of χ_{0} The I.C. $\mathcal{H}_{q_{\Gamma}}^{\Gamma, \chi_{0}}$ is zero-dimensional

^{(2).} $\operatorname{reg}(\Gamma)$ denotes the character of the regular representation of Γ

Fix $\chi \in \mathcal{A}_{\Gamma}^{n}$. $r_{\chi} := \frac{1}{2} \operatorname{dim} \left(\mathcal{H}_{n}^{\Gamma, \chi} \right)$ and $\chi_{0} := \chi - r_{\chi} \operatorname{reg}(\Gamma)^{(2)}$ $g_{\Gamma} := \text{degree of } \chi_{0}$ The I.C. $\mathcal{H}_{g_{\Gamma}}^{\Gamma, \chi_{0}}$ is zero-dimensional $\rightsquigarrow \mathcal{H}_{g_{\Gamma}}^{\Gamma, \chi_{0}} = \{I_{\chi_{0}}\}.$

^{(2).} $\operatorname{reg}(\Gamma)$ denotes the character of the regular representation of Γ

Fix $\chi \in \mathcal{A}_{\Gamma}^{n}$. $r_{\chi} := \frac{1}{2} \operatorname{dim} \left(\mathcal{H}_{n}^{\Gamma, \chi} \right)$ and $\chi_{0} := \chi - r_{\chi} \operatorname{reg}(\Gamma)^{(2)}$ $g_{\Gamma} := \text{degree of } \chi_{0}$ The I.C. $\mathcal{H}_{g_{\Gamma}}^{\Gamma, \chi_{0}}$ is zero-dimensional $\rightsquigarrow \mathcal{H}_{g_{\Gamma}}^{\Gamma, \chi_{0}} = \{I_{\chi_{0}}\}.$ Take $(p_{1}, \ldots, p_{r_{\chi}}) \in (\mathbb{C}^{2} \setminus \{(0, 0)\})^{r_{\chi}}$ such that $\forall (i, j) \in [\![1, r_{\chi}]\!]^{2}, i \neq j \Rightarrow \Gamma p_{i} \cap \Gamma p_{j} = \emptyset$

^{(2).} $\operatorname{reg}(\Gamma)$ denotes the character of the regular representation of Γ

Fix $\chi \in \mathcal{A}^n_{\Gamma}$. $r_{\chi} := \frac{1}{2} \dim \left(\mathcal{H}_{n}^{\Gamma, \chi} \right)$ and $\chi_{0} := \chi - r_{\chi} \mathrm{reg}(\Gamma)^{(2)}$ $q_{\Gamma} := \text{degree of } \chi_0$ The I.C. $\mathcal{H}_{q_{\Gamma}}^{\Gamma,\chi_{0}}$ is zero-dimensional $\rightsquigarrow \mathcal{H}_{q_{\Gamma}}^{\Gamma,\chi_{0}} = \{I_{\chi_{0}}\}.$ Take $(p_1,\ldots,p_{r_{\chi}}) \in (\mathbb{C}^2 \setminus \{(0,0)\})^{r_{\chi}}$ such that $\forall (i,j) \in [\![1,r_{\gamma}]\!]^2, i \neq j \Rightarrow \Gamma p_i \cap \Gamma p_i = \emptyset$

 $q := (\Gamma p_1, \dots, \Gamma p_{r_{\chi}}) \in (\mathbb{C}^2)^{r_{\chi}\ell}$

^{(2).} $\operatorname{reg}(\Gamma)$ denotes the character of the regular representation of Γ

Fix $\chi \in \mathcal{A}^n_{\Gamma}$. $r_{\chi} := \frac{1}{2} \dim \left(\mathcal{H}_{n}^{\Gamma, \chi} \right)$ and $\chi_{0} := \chi - r_{\chi} \mathrm{reg}(\Gamma)^{(2)}$ $q_{\Gamma} := \text{degree of } \chi_0$ The I.C. $\mathcal{H}_{q_{\Gamma}}^{\Gamma,\chi_{0}}$ is zero-dimensional $\rightsquigarrow \mathcal{H}_{q_{\Gamma}}^{\Gamma,\chi_{0}} = \{I_{\chi_{0}}\}.$ Take $(p_1,\ldots,p_{r_{\chi}}) \in (\mathbb{C}^2 \setminus \{(0,0)\})^{r_{\chi}}$ such that $\forall (i,j) \in [\![1,r_{\gamma}]\!]^2, i \neq j \Rightarrow \Gamma p_i \cap \Gamma p_i = \emptyset$ $q := (\Gamma p_1, \dots, \Gamma p_{r_{\chi}}) \in (\mathbb{C}^2)^{r_{\chi}\ell}$ $p := (0, q) \in (\mathbb{C}^2)^n$

^{(2).} $\operatorname{reg}(\Gamma)$ denotes the character of the regular representation of Γ

Fix $\chi \in \mathcal{A}^n_{\Gamma}$. $r_{\chi} := \frac{1}{2} \dim \left(\mathcal{H}_{n}^{\Gamma, \chi} \right)$ and $\chi_{0} := \chi - r_{\chi} \mathrm{reg}(\Gamma)^{(2)}$ $q_{\Gamma} := \text{degree of } \chi_0$ The I.C. $\mathcal{H}_{q_{\Gamma}}^{\Gamma,\chi_0}$ is zero-dimensional $\rightsquigarrow \mathcal{H}_{q_{\Gamma}}^{\Gamma,\chi_0} = \{I_{\chi_0}\}.$ Take $(p_1,\ldots,p_{r_{\chi}}) \in (\mathbb{C}^2 \setminus \{(0,0)\})^{r_{\chi}}$ such that $\forall (i,j) \in [\![1,r_{\gamma}]\!]^2, i \neq j \Rightarrow \Gamma p_i \cap \Gamma p_i = \emptyset$ $q := (\Gamma p_1, \dots, \Gamma p_{r_{\chi}}) \in (\mathbb{C}^2)^{r_{\chi}\ell}$ $p := (0, q) \in (\mathbb{C}^2)^n$ $S_n :=$ stabilizer of p in $\mathfrak{S}_n \times \Gamma$.

^{(2).} $\operatorname{reg}(\Gamma)$ denotes the character of the regular representation of Γ

Theorem

There exists an isomorphism $\equiv : S_p \xrightarrow{\sim} \mathfrak{S}_{g_{\Gamma}} \times \Gamma$ which endows $\mathscr{P}_{|I_{\chi_0}}^{g_{\Gamma}}$ with a S_p -module structure, such that for each $I \in \mathcal{H}_n^{\Gamma,\chi}$,

$$\left[\mathscr{P}_{|I}^{n}\right]_{\mathfrak{S}_{n}\times\Gamma}=\left[\mathrm{Ind}_{S_{p}}^{\mathfrak{S}_{n}\times\Gamma}\left(\mathscr{P}_{|I_{\chi_{0}}}^{\mathsf{g}_{\Gamma}}\right)\right]_{\mathfrak{S}_{n}\times\Gamma}$$

III - **Type** *A* **& Combinatorics**

 $\mathbb{T}_1 :=$ maximal diagonal torus of $SL_2(\mathbb{C})$.

 $\mathbb{T}_1 := \text{maximal diagonal torus of } SL_2(\mathbb{C}).$

 $\mathcal{H}_n^{\mathbb{T}_1}$ are parametrized by partitions of size n.

For example if $\lambda=(3,2)\vdash 5$

Then
$$I_{(3,2)} = \langle x^3, x^2y, y^2 \rangle \in \mathcal{H}_5^{\mathbb{T}_1}$$
.

 $\mathbb{T}_1 :=$ maximal diagonal torus of $SL_2(\mathbb{C})$.

 $\mathcal{H}_n^{\mathbb{T}_1}$ are parametrized by partitions of size n.

For example if $\lambda=(3,2)\vdash 5$

Then
$$I_{(3,2)} = \langle x^3, x^2y, y^2 \rangle \in \mathcal{H}_5^{\mathbb{T}_1}$$
.

Fix $\ell \geq 1$.

 $\mathbb{T}_1 :=$ maximal diagonal torus of $SL_2(\mathbb{C})$.

 $\mathcal{H}_n^{\mathbb{T}_1}$ are parametrized by partitions of size n.

For example if $\lambda = (3,2) \vdash 5$

Then
$$I_{(3,2)} = \langle x^3, x^2y, y^2 \rangle \in \mathcal{H}_5^{\mathbb{T}_1}$$
.

Fix $\ell \geq 1$. ζ_{ℓ} : a primitive root of unity. $\mathbb{T}_1 := \text{maximal diagonal torus of } SL_2(\mathbb{C}).$

 $\mathcal{H}_n^{\mathbb{T}_1}$ are parametrized by partitions of size n.

For example if $\lambda = (3,2) \vdash 5$

Then
$$I_{(3,2)} = \langle x^3, x^2y, y^2 \rangle \in \mathcal{H}_5^{\mathbb{T}_1}$$

Fix $\ell \geq 1$. ζ_{ℓ} : a primitive root of unity.

 $\Gamma = \mu_{\ell} < \mathbb{T}_1$ generated by $\omega_{\ell} = \operatorname{diag}(\zeta_{\ell}, \zeta_{\ell}^{-1})$

 $\mathbb{T}_1 :=$ maximal diagonal torus of $SL_2(\mathbb{C})$.

 $\mathcal{H}_n^{\mathbb{T}_1}$ are parametrized by partitions of size n.

For example if $\lambda=(3,2)\vdash 5$

Then
$$I_{(3,2)} = \langle x^3, x^2y, y^2 \rangle \in \mathcal{H}_5^{\mathbb{T}_1}$$
.

Fix $\ell \ge 1$. ζ_{ℓ} : a primitive root of unity. $\Gamma = \mu_{\ell} < \mathbb{T}_1$ generated by $\omega_{\ell} = \operatorname{diag}(\zeta_{\ell}, \zeta_{\ell}^{-1})$ and

and
$$au_{\ell} \colon \begin{array}{ccc} \mu_{\ell} & \to & \mathbb{C}^{\times} \\ \omega_{\ell} & \mapsto & \zeta_{\ell} \end{array}$$

 γ_ℓ : the ℓ -core of $\lambda^{(3)}$

^{(3).} the partition obtained from λ by removing all hooks of length $\ell.$

- γ_ℓ : the ℓ -core of $\lambda^{(3)}$
- g_ℓ : the size of γ_ℓ

^{(3).} the partition obtained from λ by removing all hooks of length $\ell.$

- γ_ℓ : the ℓ -core of $\lambda^{(3)}$
- g_ℓ : the size of γ_ℓ
- r_{ℓ} : the number of ℓ -hooks to remove from λ to obtain γ_{ℓ} $(=\frac{n-g_{\ell}}{\ell})$

^{(3).} the partition obtained from λ by removing all hooks of length ℓ .

 γ_ℓ : the ℓ -core of $\lambda^{(3)}$

 g_ℓ : the size of γ_ℓ

 r_{ℓ} : the number of ℓ -hooks to remove from λ to obtain γ_{ℓ} $(=\frac{n-g_{\ell}}{\ell})$ $w_{\ell,n} :=$

$$(g_{\ell}+1,\ldots,g_{\ell}+\ell)\ldots(n-\ell+1,\ldots,n)\in\mathfrak{S}_{r_{\ell}\ell}$$

^{(3).} the partition obtained from λ by removing all hooks of length ℓ .

 γ_ℓ : the ℓ -core of $\lambda^{(3)}$

 g_ℓ : the size of γ_ℓ

 r_{ℓ} : the number of ℓ -hooks to remove from λ to obtain γ_{ℓ} $(=\frac{n-g_{\ell}}{\ell})$ $w_{\ell,n} :=$

$$(\mathbf{g}_{\ell}+1,\ldots,\mathbf{g}_{\ell}+\ell)\ldots(n-\ell+1,\ldots,n)\in\mathfrak{S}_{r_{\ell}\ell}$$

 $C_{\ell,n} := \langle w_{\ell,n} \rangle$

^{(3).} the partition obtained from λ by removing all hooks of length ℓ .

 γ_ℓ : the ℓ -core of $\lambda^{(3)}$

 g_ℓ : the size of γ_ℓ

 r_{ℓ} : the number of ℓ -hooks to remove from λ to obtain γ_{ℓ} $(=\frac{n-g_{\ell}}{\ell})$ $w_{\ell,n} :=$

$$(g_{\ell}+1,\ldots,g_{\ell}+\ell)\ldots(n-\ell+1,\ldots,n)\in\mathfrak{S}_{r_{\ell}\ell}$$

$$C_{\ell,n} := \langle w_{\ell,n} \rangle$$
 and $\theta_{\ell} : C_{\ell,n} \to \mathbb{C}^{\times}$ s.t. $\theta_{\ell}(w_{\ell,n}) = \zeta_{\ell}$.

^{(3).} the partition obtained from λ by removing all hooks of length ℓ .

 γ_{ℓ} : the ℓ -core of $\lambda^{(3)}$

 g_ℓ : the size of γ_ℓ

 r_{ℓ} : the number of ℓ -hooks to remove from λ to obtain γ_{ℓ} $(=\frac{n-g_{\ell}}{\ell})$

 $w_{\ell,n} :=$

$$(g_{\ell}+1,\ldots,g_{\ell}+\ell)\ldots(n-\ell+1,\ldots,n)\in\mathfrak{S}_{r_{\ell}\ell}$$

$$C_{\ell,n} := \langle w_{\ell,n} \rangle \text{ and } \theta_{\ell} : C_{\ell,n} \to \mathbb{C}^{\times} \text{ s.t. } \theta_{\ell}(w_{\ell,n}) = \zeta_{\ell}.$$
$$W_{\ell,n}^{g_{\ell}} := \mathfrak{S}_{g_{\ell}} \times C_{\ell,n} < \mathfrak{S}_{n}$$

^{(3).} the partition obtained from λ by removing all hooks of length ℓ .

If M is a $(\mathfrak{S}_n imes \mu_\ell)$ -module,

$$M_i^{\ell} := \operatorname{Hom}_{\mu_{\ell}}(\tau_{\ell}^i, M), \quad \forall i \in [\![0, \ell - 1]\!]$$

If M is a $(\mathfrak{S}_n \times \mu_\ell)$ -module,

$$M_i^{\ell} := \operatorname{Hom}_{\mu_{\ell}}(\tau_{\ell}^i, M), \quad \forall i \in [\![0, \ell - 1]\!]$$

Corollary

For each partition λ of n and each $i \in \llbracket 0, \ell - 1 \rrbracket$, one has the following equality :

$$\left[\left(\mathscr{P}^n_{|I_{\lambda}} \right)_i^{\ell} \right]_{\mathfrak{S}_n} = \sum_{j=0}^{\ell-1} \left[\operatorname{Ind}_{W^{g_{\ell}}_{\ell,n}}^{\mathfrak{S}_n} \left(\left(\mathscr{P}^{g_{\ell}}_{|I_{\gamma_{\ell}}} \right)_j^{\ell} \boxtimes \theta_{\ell}^{i-j} \right) \right]_{\mathfrak{S}_n}$$

Chank you for your attention !

References

- [Fo68] J. Fogarty. "Algebraic families on an algebraic surface". In : <u>Amer. J. Math</u> 90 (1968), p. 511-521.
- [H03] M. Haiman. "Combinatorics, Symmetric functions, and Hilbert schemes". In : <u>Current developments in mathematics</u> (juill. 2003). doi : 10.4310/CDM.2002.v2002.n1.a2.