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I - Main players

Take n ≥ 1.

• Hn := Hilbn(C2) = {I ⊂ C[x, y]
∣∣I is an ideal and dim(C[x, y]/I) = n}

▶ [Fo68, Thm. 2.9] : Hn is a smooth algebraic variety of dimension 2n.

▶ Hilbert-Chow morphism

σn :
Hn → (C2)

n
/Sn

I 7→
∑

p∈V (I) dim
(
(C[x, y]/I)p

)
[p] (1)

(1). [p] denotes the class of p in (C2)
n
/Sn
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I - Main players

• Xn := reduced scheme associated with Hn ×(C2)n/Sn
(C2)

n

⌟
(C2)

n

Hn (C2)
n
/Sn

ρn

fn

πn

σn

▶ Xn is an algebraic variety.

▶ [H03, Thm. 5.2.1] The morphism ρn : Xn → Hn is flat (and by construction finite
of rank n!).

• Pn := ρn∗OXn is a locally free sheaf over Hn of rank n! ⇝ the Procesi bundle.
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I - Main players

GL2(C) ↷ Hn

Let GL2(C) act naturally on C2

GL2(C) ↷ (C2)
n

and Sn act trivially on Hn.

The morphisms ρn, σn, πn and fn are all (Sn ×GL2(C))-equivariant.

Hn ×(C2)n/Sn
(C2)

n

⌟
(C2)

n

Hn (C2)
n
/Sn

ρn

fn

πn

σn
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I - Main players

• Let Γ be a finite subgroup of SL2(C) of order ℓ (ADE).

If HΓ,χ
n := {I ∈ HΓ

n|Tr (C[x, y]/I) = χ}, and

if An
Γ := { all characters χ of Γ of degree n such that HΓ,χ

n ̸= ∅}, then

HΓ
n =

∐
χ∈An

Γ

HΓ,χ
n

6
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I - Main players

Take χ ∈ An
Γ.

Pn
|HΓ,χ

n
⇝ a vector bundle over HΓ,χ

n whose fibers are (Sn × Γ)-modules.

Our Goal :

Study the fiber Pn
|I as a (Sn × Γ)-module, ∀I ∈ HΓ,χ

n

7
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II - Reduction theorem

Fix χ ∈ An
Γ.

rχ := 1
2dim

(
HΓ,χ

n

)
and χ0 := χ− rχreg(Γ)

(2)

gΓ := degree of χ0

The I.C. HΓ,χ0
gΓ is zero-dimensional ⇝ HΓ,χ0

gΓ = {Iχ0}.

Take (p1, . . . , prχ) ∈ (C2 \ {(0, 0)})rχ such that

∀(i, j) ∈ J1, rχK2, i ̸= j ⇒ Γpi ∩ Γpj = ∅

q := (Γp1, . . . ,Γprχ) ∈ (C2)
rχℓ

p := (0, q) ∈ (C2)
n

Sp := stabilizer of p in Sn × Γ.

(2). reg(Γ) denotes the character of the regular representation of Γ

9
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II - Reduction theorem

Theorem
There exists an isomorphism s : Sp

∼−→ SgΓ × Γ which endows PgΓ
|Iχ0

with a Sp-module

structure, such that for each I ∈ HΓ,χ
n ,

[
Pn

|I

]
Sn×Γ

=
[
IndSn×Γ

Sp

(
PgΓ

|Iχ0

)]
Sn×Γ

.
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III - Type A & Combinatorics

T1 := maximal diagonal torus of SL2(C).

HT1
n are parametrized by partitions of size n.

For example if λ = (3, 2) ⊢ 5

y2

y xy x2y

1 x x2 x3

Then I(3,2) = ⟨x3, x2y, y2⟩ ∈ HT1
5 .

Fix ℓ ≥ 1.
ζℓ : a primitive root of unity.

Γ = µℓ < T1 generated by ωℓ = diag(ζℓ, ζ
−1
ℓ ) and τℓ :

µℓ → C×

ωℓ 7→ ζℓ
.

12



III - Type A & Combinatorics

T1 := maximal diagonal torus of SL2(C).

HT1
n are parametrized by partitions of size n.

For example if λ = (3, 2) ⊢ 5

y2

y xy x2y

1 x x2 x3

Then I(3,2) = ⟨x3, x2y, y2⟩ ∈ HT1
5 .

Fix ℓ ≥ 1.
ζℓ : a primitive root of unity.

Γ = µℓ < T1 generated by ωℓ = diag(ζℓ, ζ
−1
ℓ ) and τℓ :

µℓ → C×

ωℓ 7→ ζℓ
.

12



III - Type A & Combinatorics

T1 := maximal diagonal torus of SL2(C).

HT1
n are parametrized by partitions of size n.

For example if λ = (3, 2) ⊢ 5

y2

y xy x2y

1 x x2 x3

Then I(3,2) = ⟨x3, x2y, y2⟩ ∈ HT1
5 .

Fix ℓ ≥ 1.

ζℓ : a primitive root of unity.

Γ = µℓ < T1 generated by ωℓ = diag(ζℓ, ζ
−1
ℓ ) and τℓ :

µℓ → C×

ωℓ 7→ ζℓ
.

12



III - Type A & Combinatorics

T1 := maximal diagonal torus of SL2(C).

HT1
n are parametrized by partitions of size n.

For example if λ = (3, 2) ⊢ 5

y2

y xy x2y

1 x x2 x3

Then I(3,2) = ⟨x3, x2y, y2⟩ ∈ HT1
5 .

Fix ℓ ≥ 1.
ζℓ : a primitive root of unity.

Γ = µℓ < T1 generated by ωℓ = diag(ζℓ, ζ
−1
ℓ ) and τℓ :

µℓ → C×

ωℓ 7→ ζℓ
.

12



III - Type A & Combinatorics

T1 := maximal diagonal torus of SL2(C).

HT1
n are parametrized by partitions of size n.

For example if λ = (3, 2) ⊢ 5

y2

y xy x2y

1 x x2 x3

Then I(3,2) = ⟨x3, x2y, y2⟩ ∈ HT1
5 .

Fix ℓ ≥ 1.
ζℓ : a primitive root of unity.

Γ = µℓ < T1 generated by ωℓ = diag(ζℓ, ζ
−1
ℓ )

and τℓ :
µℓ → C×

ωℓ 7→ ζℓ
.

12



III - Type A & Combinatorics

T1 := maximal diagonal torus of SL2(C).

HT1
n are parametrized by partitions of size n.

For example if λ = (3, 2) ⊢ 5

y2

y xy x2y

1 x x2 x3

Then I(3,2) = ⟨x3, x2y, y2⟩ ∈ HT1
5 .

Fix ℓ ≥ 1.
ζℓ : a primitive root of unity.

Γ = µℓ < T1 generated by ωℓ = diag(ζℓ, ζ
−1
ℓ ) and τℓ :

µℓ → C×

ωℓ 7→ ζℓ
.

12



III - Type A & Combinatorics

Take λ ⊢ n.

γℓ : the ℓ-core of λ (3)

gℓ : the size of γℓ

rℓ : the number of ℓ-hooks to remove from λ to obtain γℓ (= n9gℓ
ℓ )

wℓ,n :=
(gℓ + 1, . . . , gℓ + ℓ) . . . (n 9 ℓ+ 1, . . . , n) ∈ Srℓℓ

Cℓ,n := ⟨wℓ,n⟩ and θℓ : Cℓ,n → C× s.t. θℓ(wℓ,n) = ζℓ.

W gℓ
ℓ,n := Sgℓ × Cℓ,n < Sn

(3). the partition obtained from λ by removing all hooks of length ℓ.

13
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III - Type A & Combinatorics

If M is a (Sn × µℓ)-module,

M ℓ
i := Homµℓ

(τ iℓ ,M), ∀i ∈ J0, ℓ 9 1K

Corollary
For each partition λ of n and each i ∈ J0, ℓ 9 1K, one has the following equality :[(

Pn
|Iλ

)ℓ

i

]
Sn

=
ℓ91∑
j=0

[
IndSn

W
gℓ
ℓ,n

((
Pgℓ

|Iγℓ

)ℓ

j
⊠ θi−j

ℓ

)]
Sn

.
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14



References

[Fo68] J. Fogarty. “Algebraic families on an algebraic surface”. In : Amer. J. Math 90
(1968), p. 511-521.

[H03] M. Haiman. “Combinatorics, Symmetric functions, and Hilbert schemes”. In :
Current developments in mathematics (juill. 2003). doi :
10.4310/CDM.2002.v2002.n1.a2.

15

https://doi.org/10.4310/CDM.2002.v2002.n1.a2

	I - Main players
	 II - Reduction theorem
	III - Type A & Combinatorics
	References

