Division and Localization on Groupoid Graded Rings

Caio Antony Gomes de Matos Andrade

This research was suported by FAPESP, grants 2022/11166-6, 2023/11994-9.

07 of June of 2024.

- Field of fractions: embeddings $R \rightarrow K$, *K* division ring generated as a division ring by the image of *R*.
- Commutative case: $S \subseteq R \mapsto S^{-1}R$
- Noncommutative case: Ore domains
- Noncommutative case: maps which invert square matrices (Cohn, 1971).
- Was generalized to group graded rings (Kawai, Sánchez)

Goal:

Study epimorphisms from a given groupoid graded ring to a division groupoid graded ring by means of the homogeneous matrices which are mapped to invertible matrices.

- Field of fractions: embeddings $R \rightarrow K$, *K* division ring generated as a division ring by the image of *R*.
- Commutative case: $S \subseteq R \mapsto S^{-1}R$
- Noncommutative case: Ore domains
- Noncommutative case: maps which invert square matrices (Cohn, 1971).
- Was generalized to group graded rings (Kawai, Sánchez)

Goal:

Study epimorphisms from a given groupoid graded ring to a division groupoid graded ring by means of the homogeneous matrices which are mapped to invertible matrices.

- Field of fractions: embeddings $R \rightarrow K$, *K* division ring generated as a division ring by the image of *R*.
- Commutative case: $S \subseteq R \mapsto S^{-1}R$
- Noncommutative case: Ore domains
- Noncommutative case: maps which invert square matrices (Cohn, 1971).
- Was generalized to group graded rings (Kawai, Sánchez)

Goal:

Study epimorphisms from a given groupoid graded ring to a division groupoid graded ring by means of the homogeneous matrices which are mapped to invertible matrices.

- Field of fractions: embeddings $R \to K$, *K* division ring generated as a division ring by the image of *R*.
- Commutative case: $S \subseteq R \mapsto S^{-1}R$
- Noncommutative case: Ore domains
- Noncommutative case: maps which invert square matrices (Cohn, 1971).
- Was generalized to group graded rings (Kawai, Sánchez)

Goal:

Study epimorphisms from a given groupoid graded ring to a division groupoid graded ring by means of the homogeneous matrices which are mapped to invertible matrices.

- Field of fractions: embeddings $R \to K$, *K* division ring generated as a division ring by the image of *R*.
- Commutative case: $S \subseteq R \mapsto S^{-1}R$
- Noncommutative case: Ore domains
- Noncommutative case: maps which invert square matrices (Cohn, 1971).
- Was generalized to group graded rings (Kawai, Sánchez)

Goal:

Study epimorphisms from a given groupoid graded ring to a division groupoid graded ring by means of the homogeneous matrices which are mapped to invertible matrices.

- Field of fractions: embeddings $R \to K$, *K* division ring generated as a division ring by the image of *R*.
- Commutative case: $S \subseteq R \mapsto S^{-1}R$
- Noncommutative case: Ore domains
- Noncommutative case: maps which invert square matrices (Cohn, 1971).
- Was generalized to group graded rings (Kawai, Sánchez)

Goal:

Study epimorphisms from a given groupoid graded ring to a division groupoid graded ring by means of the homogeneous matrices which are mapped to invertible matrices.

イロト イポト イヨト イヨト

3

Let's start with some drawings!

Groupoids

Definition

A groupoid Γ is a small category in which every arrow is an inversible.

- Groupoid = arrows of Γ ;
- Γ_0 = objects of Γ = idempotents of Γ ;
- Groupoids as semigroups;

Example

I set, then $\Gamma = I \times I$ is a groupoid

```
(i,j)(j,k) = (i,k).
```

Groupoids

Definition

A groupoid Γ is a small category in which every arrow is an inversible.

- Groupoid = arrows of Γ ;
- Γ_0 = objects of Γ = idempotents of Γ ;
- Groupoids as semigroups;

Example

I set, then $\Gamma = I \times I$ is a groupoid

```
(i,j)(j,k) = (i,k).
```

Groupoids

Definition

A groupoid Γ is a small category in which every arrow is an inversible.

- Groupoid = arrows of Γ ;
- Γ_0 = objects of Γ = idempotents of Γ ;
- Groupoids as semigroups;

Example

I set, then $\Gamma = I \times I$ *is a groupoid*

```
(i,j)(j,k) = (i,k).
```

Groupoid Graded Rings

Definition

 Γ groupoid, R ring. We say that R is a Γ -graded ring if

- **1** $R = \bigoplus_{\gamma \in \Gamma} R_{\gamma}$, R_{γ} additive subgroup;
- **2** If $\gamma \delta$ exists, then $R_{\gamma}R_{\delta} \subseteq R_{\gamma\delta}$;
- **3** If $\gamma\delta$ doesn't exist, then $R_{\gamma}R_{\delta} = 0$;
- 4 (Cala, Lundström, Pinedo 2021) For every $e \in \Gamma_0$, there exists idempotents $1_e \in R_e$ such that, for every $t(\gamma) \xleftarrow{\gamma} d(\gamma) \in \Gamma$, $x \in R_{\gamma}$, we have

$$1_{t(\gamma)}x = x = x1_{d(\gamma)}.$$

Definition

Idempotent support of R: $\Gamma_0(R) = \{e \in \Gamma_0 : 1_e \neq 0\}.$

Groupoid Graded Rings

Definition

 Γ groupoid, R ring. We say that R is a Γ -graded ring if

- **1** $R = \bigoplus_{\gamma \in \Gamma} R_{\gamma}$, R_{γ} additive subgroup;
- **2** If $\gamma \delta$ exists, then $R_{\gamma}R_{\delta} \subseteq R_{\gamma\delta}$;
- **3** If $\gamma \delta$ doesn't exist, then $R_{\gamma}R_{\delta} = 0$;
- **4** (*Cala, Lundström, Pinedo 2021*) For every $e \in \Gamma_0$, there exists idempotents $1_e \in R_e$ such that, for every $t(\gamma) \leftarrow d(\gamma) \in \Gamma$, $x \in R_\gamma$, we have

$$1_{t(\gamma)}x = x = x1_{d(\gamma)}.$$

Definition

Idempotent support of R: $\Gamma_0(R) = \{e \in \Gamma_0 : 1_e \neq 0\}.$

Groupoid Graded Rings

Definition

 Γ groupoid, R ring. We say that R is a Γ -graded ring if

- **1** $R = \bigoplus_{\gamma \in \Gamma} R_{\gamma}$, R_{γ} additive subgroup;
- **2** If $\gamma \delta$ exists, then $R_{\gamma}R_{\delta} \subseteq R_{\gamma\delta}$;
- **3** If $\gamma\delta$ doesn't exist, then $R_{\gamma}R_{\delta} = 0$;
- **4** (*Cala, Lundström, Pinedo 2021*) For every $e \in \Gamma_0$, there exists idempotents $1_e \in R_e$ such that, for every $t(\gamma) \leftarrow d(\gamma) \in \Gamma$, $x \in R_\gamma$, we have

$$1_{t(\gamma)}x = x = x1_{d(\gamma)}.$$

Definition

Idempotent support of R: $\Gamma_0(R) = \{e \in \Gamma_0 : 1_e \neq 0\}.$

Groupoid Graded Rings

Definition

 Γ groupoid, R ring. We say that R is a Γ -graded ring if

- **1** $R = \bigoplus_{\gamma \in \Gamma} R_{\gamma}$, R_{γ} additive subgroup;
- **2** If $\gamma \delta$ exists, then $R_{\gamma}R_{\delta} \subseteq R_{\gamma\delta}$;
- **3** If $\gamma \delta$ doesn't exist, then $R_{\gamma}R_{\delta} = 0$;
- **4** (*Cala, Lundström, Pinedo 2021*) For every $e \in \Gamma_0$, there exists idempotents $1_e \in R_e$ such that, for every $t(\gamma) \leftarrow d(\gamma) \in \Gamma$, $x \in R_\gamma$, we have

$$1_{t(\gamma)}x = x = x1_{d(\gamma)}.$$

Definition

Idempotent support of R: $\Gamma_0(R) = \{e \in \Gamma_0 : 1_e \neq 0\}.$

Groupoids Groupoid Graded Rings Homogeneous Matrices

イロト イポト イヨト イヨト 二日

Division on Groupoid Graded Rings

Definition

(*Graded*) *invertible element*: for $x \in R_{\gamma} \setminus \{0\}$, there exists $y \in R_{\gamma^{-1}}$ such that $xy = 1_{t(\gamma)}$ and $yx = 1_{d(\gamma)}$.

Example

 $\Gamma = \{e_1\} \cup \{e_2\}, R = R_{e_1} \times R_{e_2}, where R_{e_1} = R_{e_2} = \mathbb{Q}$. Then, R is a Γ -graded division ring, which has proper graded ideals $R_{e_1} \times \{0\}$ and $\{0\} \times R_{e_2}$.

Groupoids Groupoid Graded Rings Homogeneous Matrices

イロト イポト イヨト イヨト 二日

Division on Groupoid Graded Rings

Definition

(*Graded*) *invertible element*: for $x \in R_{\gamma} \setminus \{0\}$, there exists $y \in R_{\gamma^{-1}}$ such that $xy = 1_{t(\gamma)}$ and $yx = 1_{d(\gamma)}$.

Example

 $\Gamma = \{e_1\} \cup \{e_2\}, R = R_{e_1} \times R_{e_2}, where R_{e_1} = R_{e_2} = \mathbb{Q}$. Then, R is a Γ -graded division ring, which has proper graded ideals $R_{e_1} \times \{0\}$ and $\{0\} \times R_{e_2}$.

Groupoids Groupoid Graded Rings Homogeneous Matrices

イロト イポト イヨト イヨト 二日

Division on Groupoid Graded Rings

Definition

(*Graded*) *invertible element*: for $x \in R_{\gamma} \setminus \{0\}$, there exists $y \in R_{\gamma^{-1}}$ such that $xy = 1_{t(\gamma)}$ and $yx = 1_{d(\gamma)}$.

Example

 $\Gamma = \{e_1\} \cup \{e_2\}, R = R_{e_1} \times R_{e_2}$, where $R_{e_1} = R_{e_2} = \mathbb{Q}$. Then, R is a Γ -graded division ring, which has proper graded ideals $R_{e_1} \times \{0\}$ and $\{0\} \times R_{e_2}$.

Groupoids Groupoid Graded Rings Homogeneous Matrices

Maps between groupoid graded rings

Definition

Let R, S be Γ -graded rings. We say that a ring homomorphism homomorphism $f : R \longrightarrow S$ is a graded ring homomorphism if

1
$$f(R_{\gamma}) \subseteq S_{\gamma}$$
, for all $\gamma \in \Gamma$;

2
$$f(1_e) = 1_e$$
, for every $e \in \Gamma_0$;

Question:

What about if R, S are graded by different groupoids? (Becomes pure chaos!)

Groupoids Groupoid Graded Rings Homogeneous Matrices

Maps between groupoid graded rings

Definition

Let R, S be Γ -graded rings. We say that a ring homomorphism homomorphism $f : R \longrightarrow S$ is a graded ring homomorphism if

1
$$f(R_{\gamma}) \subseteq S_{\gamma}$$
, for all $\gamma \in \Gamma$;

2
$$f(1_e) = 1_e$$
, for every $e \in \Gamma_0$;

Question:

What about if *R*, *S* are graded by different groupoids? (Becomes pure chaos!)

Groupoids Groupoid Graded Rings Homogeneous Matrices

Maps between groupoid graded rings

Definition

Let R, S be Γ -graded rings. We say that a ring homomorphism homomorphism $f : R \longrightarrow S$ is a graded ring homomorphism if

1
$$f(R_{\gamma}) \subseteq S_{\gamma}$$
, for all $\gamma \in \Gamma$;

2
$$f(1_e) = 1_e$$
, for every $e \in \Gamma_0$;

Question:

What about if *R*, *S* are graded by different groupoids? (Becomes pure chaos!)

Homogeneous Matrices

Definition

Homogeneous Matrices: $\overline{\alpha} \in \Gamma^m, \overline{\beta} \in \Gamma^n$. Consider

$$M_{\overline{\alpha}\times\overline{\beta}}(R) = \left\{ A \in \begin{pmatrix} R_{\alpha_1\beta_1^{-1}} & \dots & R_{\alpha_1\beta_n^{-1}} \\ \vdots & \ddots & \vdots \\ R_{\alpha_m\beta_1^{-1}} & \dots & R_{\alpha_m\beta_n^{-1}} \end{pmatrix} \right\}$$

where $R_{\alpha_i\beta_j^{-1}} = 0$ if $\alpha_i\beta_j^{-1}$ is not defined. Set of all homogeneous matrices: $\mathcal{M}(R)$.

$$I_{\overline{\alpha}} = \begin{pmatrix} 1_{t(\alpha_1)} & 0 & \dots & 0\\ 0 & 1_{t(\alpha_2)} & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \dots & 1_{t(\alpha_n)} \end{pmatrix}$$

 $I_{\overline{\alpha}}A = AI_{\overline{\beta}} = A$, for $A \in M_{\overline{\alpha} \times \overline{\beta}}(R)$

イロト イ理ト イヨト イヨト

3

Homogeneous Matrices

Definition

Homogeneous Matrices: $\overline{\alpha} \in \Gamma^m, \overline{\beta} \in \Gamma^n$. Consider

$$M_{\overline{\alpha}\times\overline{\beta}}(R) = \left\{ A \in \begin{pmatrix} R_{\alpha_1\beta_1^{-1}} & \dots & R_{\alpha_1\beta_n^{-1}} \\ \vdots & \ddots & \vdots \\ R_{\alpha_m\beta_1^{-1}} & \dots & R_{\alpha_m\beta_n^{-1}} \end{pmatrix} \right\}$$

where $R_{\alpha_i\beta_j^{-1}} = 0$ if $\alpha_i\beta_j^{-1}$ is not defined. Set of all homogeneous matrices: $\mathcal{M}(R)$.

$$I_{\overline{\alpha}} = \begin{pmatrix} 1_{t(\alpha_1)} & 0 & \dots & 0\\ 0 & 1_{t(\alpha_2)} & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \dots & 1_{t(\alpha_n)} \end{pmatrix}$$

 $I_{\overline{\alpha}}A = AI_{\overline{\beta}} = A$, for $A \in M_{\overline{\alpha} \times \overline{\beta}}(R)$

イロト イ理ト イヨト イヨト

Э

Homogeneous Matrices

Definition

Homogeneous Matrices: $\overline{\alpha} \in \Gamma^m, \overline{\beta} \in \Gamma^n$. Consider

$$M_{\overline{\alpha}\times\overline{\beta}}(R) = \left\{ A \in \begin{pmatrix} R_{\alpha_1\beta_1^{-1}} & \dots & R_{\alpha_1\beta_n^{-1}} \\ \vdots & \ddots & \vdots \\ R_{\alpha_m\beta_1^{-1}} & \dots & R_{\alpha_m\beta_n^{-1}} \end{pmatrix} \right\}$$

where $R_{\alpha_i\beta_j^{-1}} = 0$ if $\alpha_i\beta_j^{-1}$ is not defined. Set of all homogeneous matrices: $\mathcal{M}(R)$.

$$I_{\overline{\alpha}} = \begin{pmatrix} 1_{t(\alpha_1)} & 0 & \dots & 0 \\ 0 & 1_{t(\alpha_2)} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1_{t(\alpha_n)} \end{pmatrix}$$

 $I_{\overline{\alpha}}A = AI_{\overline{\beta}} = A$, for $A \in M_{\overline{\alpha} \times \overline{\beta}}(R)$

イロト イ理ト イヨト イヨト

Э

Homogeneous Matrices

Definition

Homogeneous Matrices: $\overline{\alpha} \in \Gamma^m, \overline{\beta} \in \Gamma^n$. Consider

$$M_{\overline{\alpha}\times\overline{\beta}}(R) = \left\{ A \in \begin{pmatrix} R_{\alpha_1\beta_1^{-1}} & \dots & R_{\alpha_1\beta_n^{-1}} \\ \vdots & \ddots & \vdots \\ R_{\alpha_m\beta_1^{-1}} & \dots & R_{\alpha_m\beta_n^{-1}} \end{pmatrix} \right\}$$

where $R_{\alpha_i\beta_j^{-1}} = 0$ if $\alpha_i\beta_j^{-1}$ is not defined. Set of all homogeneous matrices: $\mathcal{M}(R)$.

$$I_{\overline{\alpha}} = \begin{pmatrix} 1_{t(\alpha_1)} & 0 & \dots & 0 \\ 0 & 1_{t(\alpha_2)} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1_{t(\alpha_n)} \end{pmatrix},$$

Homogeneous Matrices

Definition

Homogeneous Matrices: $\overline{\alpha} \in \Gamma^m, \overline{\beta} \in \Gamma^n$. Consider

$$M_{\overline{\alpha}\times\overline{\beta}}(R) = \left\{ A \in \begin{pmatrix} R_{\alpha_1\beta_1^{-1}} & \dots & R_{\alpha_1\beta_n^{-1}} \\ \vdots & \ddots & \vdots \\ R_{\alpha_m\beta_1^{-1}} & \dots & R_{\alpha_m\beta_n^{-1}} \end{pmatrix} \right\}$$

where $R_{\alpha_i\beta_j^{-1}} = 0$ if $\alpha_i\beta_j^{-1}$ is not defined. Set of all homogeneous matrices: $\mathcal{M}(R)$.

$$I_{\overline{\alpha}} = \begin{pmatrix} 1_{t(\alpha_1)} & 0 & \dots & 0 \\ 0 & 1_{t(\alpha_2)} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1_{t(\alpha_n)} \end{pmatrix},$$

イロト イポト イヨト イヨト

3

Definition

Let $\overline{\alpha}, \overline{\beta} \in \Gamma^n$. We say that $A \in M_{\overline{\alpha} \times \overline{\beta}}(R)$ is invertible if there exists $B \in M_{\overline{\beta} \times \overline{\alpha}}(R)$ such that

$$AB = I_{\overline{\alpha}}, \qquad BA = I_{\overline{\beta}}.$$

Groupoids Groupoid Graded Rings Homogeneous Matrices

We're now ready to attack our problem!

Goal:

Study epimorphisms from a given groupoid graded ring to a division groupoid graded ring by means of the homogeneous matrices which are mapped to invertible matrices.

Definition

Let $f : \mathbb{R} \longrightarrow S$ be a graded ring homomorphism and $\Sigma \in \mathcal{M}(\mathbb{R})$ be such that f(A) is invertible for every $A \in \Sigma$. We call $f \mid a \Sigma$ -inverting (graded ring) homomorphism.

Definition

Let *R* be a Γ -graded ring and $\Omega \subseteq \Gamma_0(R)$. We say that $\Sigma \subseteq \mathcal{M}_\Omega(R)$ is graded (lower) semimultiplicative if

1
$$(1_e) \in \Sigma$$
, for every $e \in \Gamma_0(R)$;

2 If $A \in \Sigma \cap M_{\overline{\alpha} \times \overline{\beta}}(R), B \in \Sigma \cap M_{\overline{\alpha'} \times \overline{\beta'}}(R)$, then

$$\begin{pmatrix} A & 0 \\ C & B \end{pmatrix} \in \Sigma$$

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

★ E ► ★ E ►

for every $C \in M_{\overline{\alpha'} \times \overline{\beta}}(R)$

Definition

Let $f : \mathbb{R} \longrightarrow S$ be a graded ring homomorphism and $\Sigma \in \mathcal{M}(\mathbb{R})$ be such that f(A) is invertible for every $A \in \Sigma$. We call $f \mid a \Sigma$ -inverting (graded ring) homomorphism.

Definition

Let *R* be a Γ -graded ring and $\Omega \subseteq \Gamma_0(R)$. We say that $\Sigma \subseteq \mathcal{M}_\Omega(R)$ is graded (lower) semimultiplicative if

1
$$(1_e) \in \Sigma$$
, for every $e \in \Gamma_0(R)$;

2 If
$$A \in \Sigma \cap M_{\overline{\alpha} \times \overline{\beta}}(R), B \in \Sigma \cap M_{\overline{\alpha'} \times \overline{\beta'}}(R)$$
, then

$$\begin{pmatrix} A & 0 \\ C & B \end{pmatrix} \in \Sigma$$

Image: A matrix

글 🕨 🖌 글 🕨

for every $C \in M_{\overline{\alpha'} \times \overline{\beta}}(R)$

→ Ξ → < Ξ →</p>

Graded semimultiplicative sets show up naturally.

Proposition

Let $f : \mathbb{R} \longrightarrow S$ a graded ring homomorphism such that $\Gamma_0(\mathbb{R}) = \Gamma_0(S)$. Then, the set

$$\Sigma = \{A \in \mathcal{M}(R) : f(A) \text{ is invertible in } S\}$$

is graded semimultiplicative.

Graded Rational Closure

Graded Rational Closure

Warning: Technical definition, but don't worry!

Definition

Let $\Sigma \in \mathcal{M}(R)$ and $f : R \longrightarrow S$ be a Σ -inverting homomorphism. For $\gamma \in \Gamma$, we define the **homogeneous rational closure of degree** γ as the set $(R_f(\Sigma))_{\gamma}$ consisting of all $x \in S$ such that there exists $\overline{\alpha}, \overline{\beta} \in \Gamma^n, A \in \Sigma_{\overline{\alpha} \times \overline{\beta}}$ such that $\gamma = (\alpha_i \beta_j^{-1})^{-1} = \beta_j \alpha_i^{-1}$, and x is the (j, i)-th entry of $(A^f)^{-1}$. The **graded rational closure**, denoted by $R_f(\Sigma)$, is the additive subgroup of S generated by $\bigcup_{\gamma \in \Gamma} (R_f(\Sigma))_{\gamma}$.

Graded Rational Closure

Graded Rational Closure

Warning: Technical definition, but don't worry!

Definition

Let $\Sigma \in \mathcal{M}(R)$ and $f : R \longrightarrow S$ be a Σ -inverting homomorphism. For $\gamma \in \Gamma$, we define the **homogeneous rational closure of degree** γ as the set $(R_f(\Sigma))_{\gamma}$ consisting of all $x \in S$ such that there exists $\overline{\alpha}, \overline{\beta} \in \Gamma^n, A \in \Sigma_{\overline{\alpha} \times \overline{\beta}}$ such that $\gamma = (\alpha_i \beta_j^{-1})^{-1} = \beta_j \alpha_i^{-1}$, and x is the (j, i)-th entry of $(A^f)^{-1}$. The graded rational closure, denoted by $R_f(\Sigma)$, is the additive subgroup of S generated by $\bigcup_{\gamma \in \Gamma} (R_f(\Sigma))_{\gamma}$.

Theorem

Let $f : \mathbb{R} \longrightarrow S$ be a graded ring homomorphism such that $\Gamma_0(\mathbb{R}) = \Gamma_0(\mathbb{K})$. Set

$$\Sigma = \{A \in \mathcal{M} : A^f \text{ is invertible over } S\}.$$

Then, $R_f(\Sigma)$ is a Γ -graded ring. Furthermore, if $x \in (Q_f(\Sigma))_{\gamma}$ is invertible in S, then $x^{-1} \in (Q_f(\Sigma))_{\gamma^{-1}}$. Thus, if S is a Γ -graded division ring, then $R_f(\Sigma)$ is a Γ -graded division subring of S.

Theorem (CA, del Río, Sánchez)

Let $f : R \longrightarrow S$ be a Γ -graded ring homomorphism such that $\Gamma_0(R) = \Gamma_0(K)$, Σ be a graded lower semimultiplicative subset of $\mathcal{M}(R)$ such that f is Σ -inverting. Then, the map $f : R \longrightarrow R_f(\Sigma)$ is an epimorphism of Γ -graded rings.

Theorem

Let $f : \mathbb{R} \longrightarrow S$ be a graded ring homomorphism such that $\Gamma_0(\mathbb{R}) = \Gamma_0(\mathbb{K})$. Set

$$\Sigma = \{A \in \mathcal{M} : A^f \text{ is invertible over } S\}.$$

Then, $R_f(\Sigma)$ is a Γ -graded ring. Furthermore, if $x \in (Q_f(\Sigma))_{\gamma}$ is invertible in S, then $x^{-1} \in (Q_f(\Sigma))_{\gamma^{-1}}$. Thus, if S is a Γ -graded division ring, then $R_f(\Sigma)$ is a Γ -graded division subring of S.

Theorem (CA, del Río, Sánchez)

Let $f : \mathbb{R} \longrightarrow S$ be a Γ -graded ring homomorphism such that $\Gamma_0(\mathbb{R}) = \Gamma_0(\mathbb{K}), \Sigma$ be a graded lower semimultiplicative subset of $\mathcal{M}(\mathbb{R})$ such that f is Σ -inverting. Then, the map $f : \mathbb{R} \longrightarrow \mathbb{R}_f(\Sigma)$ is an epimorphism of Γ -graded rings.

Graded Universal Localization

Definition

 (\mathbf{R}, Σ) -INV: Category of Σ -inverting homomorphisms.

• Objects: Σ -inverting homomorphisms $f : \mathbb{R} \to S$

• Arrows: Graded ring homomorphisms $S \rightarrow S'$ such that

Definition

A universal localization of R at Σ is a an initial object in the category (R, Σ) -INV.

Graded Universal Localization

Definition

 (R, Σ) -INV: Category of Σ -inverting homomorphisms.

• Objects: Σ -inverting homomorphisms $f : \mathbb{R} \to S$

• Arrows: Graded ring homomorphisms $S \rightarrow S'$ such that

Definition

A universal localization of R at Σ is a an initial object in the category (R, Σ) -INV.

3

イロト イ理ト イヨト イヨト

Proposition

Let *R* be a Γ -graded ring and $\Sigma \subseteq \mathcal{M}(R)$. Then, the following statements hold true. There exists a universal localization $\lambda : R \to R_{\Sigma}$ of *R* at Σ , and the map λ is a graded ring epimorphism.

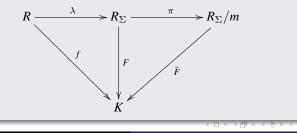
Theorem (CA, del Río, Sánchez)

Let *R* be a Γ -graded ring, *K* be a Γ -graded division ring and $f : \mathbb{R} \to K$ be a epimorphism of Γ -graded rings such that $\Gamma_0(\mathbb{R}) = \Gamma_0(K)$. Let

 $\Sigma = \{A \in \mathcal{M}(R) : f(A) \text{ is invertible over } K\},\$

 $m = \langle x \in R : x \text{ homogeneous and not invertible} \rangle$,

we have that $R_{\Sigma}/m \simeq R_f(\Sigma)$, $\pi\lambda : R \to R_{\Sigma}/m$ is an epimorphism and there exists an isomorphism of Γ -graded *R*-rings $\tilde{F} : R_{\Sigma}/m \to K$ such that the following diagram is commutative.



Caio Antony Gomes de Matos Andrade

イロト 不得下 不足下 不足下

3

What now?

• When is R_{Σ} actually an interesting ring? (Known as Malcomsom's Criterion)

■ For which $\Sigma \subseteq \mathcal{M}(R)$ is R_{Σ} "graded local" and $R_f(\Sigma)$ a division ring? (scarily technical in the simpler cases)

★ Ξ → ★ Ξ →

1

What now?

- When is R_{Σ} actually an interesting ring? (Known as Malcomsom's Criterion)
- For which $\Sigma \subseteq \mathcal{M}(R)$ is R_{Σ} "graded local" and $R_f(\Sigma)$ a division ring? (scarily technical in the simpler cases)

€ 990

ヘロト 人間 ト 人 臣 ト 人 臣 トー

Grazie mille!!!

Caio Antony Gomes de Matos Andrade

R. Brown, *From groups to groupoids: a brief survey*, Bull. London Math. Soc. **19** (1987), no. 2, 113–134.

- J. Cala, P. Lundström and H. Pinedo, *Object-unital groupoid graded rings, crossed products and separability*, Comm. Algebra **49** (2021), no. 4, 1676–1696.
- P.M. Cohn, *Free Ideal Rings and Localization in General Rings*, Cambridge University Press, 2006.
- D. E. N. Kawai, J. Sánchez, *On graded division rings*, submitted for publication. https://arxiv.org/abs/2010.09146