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Motivation

Field of fractions: embedings R→ K, K division ring generated as a
division ring by the image of R.
Commutative case: S ⊆ R 7→ S−1R

Noncommutative case: Ore domains
Noncommutative case: maps which invert square matrices (Cohn,
1971).
Was generalized to group graded rings (Kawai, Sánchez)

Goal:
Study epimorphisms from a given groupoid graded ring to a division
groupoid graded ring by means of the homogeneous matrices which are
mapped to invertible matrices.
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Let’s start with some drawings!
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Groupoids

Definition
A groupoid Γ is a small category in which every arrow is an inversible.

Groupoid = arrows of Γ;
Γ0 = objects of Γ = idempotents of Γ;
Groupoids as semigroups;

Example

I set, then Γ = I × I is a groupoid

(i, j)(j, k) = (i, k).
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Groupoid Graded Rings

Definition
Γ groupoid, R ring. We say that R is a Γ-graded ring if

1 R = ⊕γ∈ΓRγ , Rγ additive subgroup;

2 If γδ exists, then RγRδ ⊆ Rγδ;

3 If γδ doesn’t exist, then RγRδ = 0;

4 (Cala, Lundström, Pinedo 2021) For every e ∈ Γ0, there exists
idempotents 1e ∈ Re such that, for every t(γ)

γ←− d(γ) ∈ Γ, x ∈ Rγ , we
have

1t(γ)x = x = x1d(γ).

Definition

Idempotent support of R: Γ0(R) = {e ∈ Γ0 : 1e ̸= 0}.

We can suppose that Γ0(R) = Γ0 by taking the full subgroupoid of Γ whose
objects are Γ0(R).

Caio Antony Gomes de Matos Andrade
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Division on Groupoid Graded Rings

Definition

(Graded) invertible element: for x ∈ Rγ \ {0}, there exists y ∈ Rγ−1 such
that xy = 1t(γ) and yx = 1d(γ).

Example

Γ = {e1} ∪ {e2}, R = Re1 × Re2 , where Re1 = Re2 = Q. Then, R is a
Γ-graded division ring, which has proper graded ideals Re1 × {0} and
{0} × Re2 .

Caio Antony Gomes de Matos Andrade
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Maps between groupoid graded rings

Definition
Let R, S be Γ-graded rings. We say that a ring homomorphism
homomorphism f : R −→ S is a graded ring homomorphism if

1 f (Rγ) ⊆ Sγ , for all γ ∈ Γ;

2 f (1e) = 1e, for every e ∈ Γ0;

Question:

What about if R, S are graded by different groupoids? (Becomes pure chaos!)
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Homogeneous Matrices

Definition

Homogeneous Matrices: α ∈ Γm, β ∈ Γn. Consider

Mα×β(R) =

A ∈

Rα1β
−1
1

. . . Rα1β
−1
n

...
. . .

...
Rαmβ

−1
1

. . . Rαmβ
−1
n




where Rαiβ
−1
j

= 0 if αiβ
−1
j is not defined.

Set of all homogeneous matrices:M(R).

Iα =


1t(α1) 0 . . . 0

0 1t(α2) . . . 0
...

...
. . .

...
0 0 . . . 1t(αn)

 , IαA = AIβ = A, for A ∈ Mα×β(R)

Caio Antony Gomes de Matos Andrade
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Definition

Let α, β ∈ Γn. We say that A ∈ Mα×β(R) is invertible if there exists
B ∈ Mβ×α(R) such that

AB = Iα, BA = Iβ .

Caio Antony Gomes de Matos Andrade
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Groupoid Graded Rings
Homogeneous Matrices

We’re now ready to attack our problem!

Goal:
Study epimorphisms from a given groupoid graded ring to a division
groupoid graded ring by means of the homogeneous matrices which are
mapped to invertible matrices.
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Definition

Let f : R −→ S be a graded ring homomorphism and Σ ∈M(R) be such
that f (A) is invertible for every A ∈ Σ. We call f a Σ-inverting (graded ring)
homomorphism.

Definition

Let R be a Γ-graded ring and Ω ⊆ Γ0(R). We say that Σ ⊆MΩ(R) is
graded (lower) semimultiplicative if

1 (1e) ∈ Σ, for every e ∈ Γ0(R);

2 If A ∈ Σ ∩Mα×β(R),B ∈ Σ ∩Mα′×β′(R), then(
A 0
C B

)
∈ Σ

for every C ∈ Mα′×β(R)

Caio Antony Gomes de Matos Andrade
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Graded semimultiplicative sets show up naturally.

Proposition

Let f : R −→ S a graded ring homomorphism such that Γ0(R) = Γ0(S).
Then, the set

Σ = {A ∈M(R) : f (A) is invertible in S}

is graded semimultiplicative.

Caio Antony Gomes de Matos Andrade
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Graded Rational Closure

Warning: Technical definition, but don’t worry!

Definition

Let Σ ∈M(R) and f : R −→ S be a Σ-inverting homomorphism. For γ ∈ Γ,
we define the homogeneous rational closure of degree γ as the set (Rf (Σ))γ
consisting of all x ∈ S such that there exists α, β ∈ Γn,A ∈ Σα×β such that
γ = (αiβ

−1
j )−1 = βjα

−1
i , and x is the (j, i)-th entry of (Af )−1. The graded

rational closure, denoted by Rf (Σ), is the additive subgroup of S generated
by

⋃
γ∈Γ(Rf (Σ))γ .

Caio Antony Gomes de Matos Andrade
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Theorem

Let f : R −→ S be a graded ring homomorphism such that Γ0(R) = Γ0(K).
Set

Σ = {A ∈M : Af is invertible over S}.

Then, Rf (Σ) is a Γ-graded ring. Furthermore, if x ∈ (Qf (Σ))γ is invertible
in S, then x−1 ∈ (Qf (Σ))γ−1 . Thus, if S is a Γ-graded division ring, then
Rf (Σ) is a Γ-graded division subring of S.

Theorem (CA, del Río, Sánchez)

Let f : R −→ S be a Γ-graded ring homomorphism such that
Γ0(R) = Γ0(K), Σ be a graded lower semimultiplicative subset ofM(R)
such that f is Σ-inverting. Then, the map f : R −→ Rf (Σ) is an epimorphism
of Γ-graded rings.

Caio Antony Gomes de Matos Andrade
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Graded Universal Localization

Definition

(R,Σ)-INV: Category of Σ-inverting homomorphisms.

Objects: Σ-inverting homomorphisms f : R→ S

Arrows: Graded ring homomorphisms S→ S′ such that

R //

��

S

��
S′.

Definition
A universal localization of R at Σ is a an initial object in the category
(R,Σ)-INV.

Caio Antony Gomes de Matos Andrade
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Proposition

Let R be a Γ-graded ring and Σ ⊆M(R). Then, the following statements
hold true. There exists a universal localization λ : R→ RΣ of R at Σ, and
the map λ is a graded ring epimorphism.

Caio Antony Gomes de Matos Andrade
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Theorem (CA, del Río, Sánchez)

Let R be a Γ-graded ring, K be a Γ-graded division ring and f : R→ K be a
epimorphism of Γ-graded rings such that Γ0(R) = Γ0(K). Let

Σ = {A ∈M(R) : f (A) is invertible over K},

m = ⟨x ∈ R : x homogeneous and not invertible⟩,

we have that RΣ/m ≃ Rf (Σ), πλ : R→ RΣ/m is an epimorphism and there
exists an isomorphism of Γ-graded R-rings F̃ : RΣ/m→ K such that the
following diagram is commutative.

R λ //

f

��

RΣ
π //

F

��

RΣ/m

F̃

}}
K

Caio Antony Gomes de Matos Andrade
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What now?

When is RΣ actually an interesting ring? (Known as Malcomsom’s
Criterion)
For which Σ ⊆M(R) is RΣ "graded local"and Rf (Σ) a division ring?
(scarily technical in the simpler cases)
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Grazie mille!!!
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