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Conventions & Notation

G is a finite group.

k is a field of characteristic p > 0.
sp(G) denotes the set of p-subgroups of G.

Sylp(G) denotes the set of Sylow p-subgroups of G.

All kG-modules are finitely generated.

kGtriv is the category of f.g. p-permutation kG-modules.
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Why care?

Why should you care about endotrivial complexes?

They are the invertible objects of Kb(kGtriv), which admits a Verdier quotient
equivalent to Db(kGmod), due to Balmer and Gallauer.

They induce “diagonal” splendid Rickard autoequivalences over Fp, up to a twist.

They are generalizations of endotrivial modules, and are connected to
endo-p-permutation modules.

They categorify the orthogonal unit group of the trivial source ring, O(T (kG)).
The group Ek(G) of endotrivial complexes forms a rational p-biset functor, and is
the Picard group of Kb(kGtriv).

A main result: We have classified all endotrivial complexes!
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Motivation: endotrivial modules

A kG-module M is endotrivial if M∗ ⊗k M ≅ k⊕P , for some projective module P , i.e.
M∗ ⊗k M ≅ k ∈ stmod(kG). These are the invertible objects of stmod(kG).

Tk(G) ∶= {[M] ∈ stmod(kG) ∣M is endotrivial}.
The group (Tk(G),⊗k) parameterizes endotrivial modules - it is the Picard group of
stmod(kG).

Known results

Tk(G) is finitely generated abelian. (Puig ’90, CMN ’06)

Tk(G) is determined for p-groups. (CT ’00-’05)

Tk(G) is determined for somme finite groups of Lie type (CMN ’06)

...and many, many more!

Determining Tk(G) for all groups remains open.

Sam K. Miller University of California, Santa Cruz
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Preliminaries

Definition (p-permutation)

A kG-module M is a

permutation module if M ≅ k[X] for some G-set X.

p-permutation module if for S ∈ Sylp(G), resGS M is a permutation module, or
equivalently, if M is a direct summand of a permutation module.

Definition (Brauer construction)

Given P ∈ sp(G), the Brauer construction is an additive functor
−(P ) ∶ kGtriv → k[NG(P )/P ]triv.

For M,N ∈ kGtriv, we have a natural isomorphism

(M ⊗k N)(P ) ≅M(P )⊗k N(P ).

Think of the Brauer construction as a “modular fixed points” functor. Indeed,
k[X](P ) ≅ k[XP ].

Sam K. Miller University of California, Santa Cruz

Endotrivial complexes



Introduction Endotrivial complexes h-marks and homology Classification

Preliminaries

Definition (p-permutation)

A kG-module M is a

permutation module if M ≅ k[X] for some G-set X.

p-permutation module if for S ∈ Sylp(G), resGS M is a permutation module, or
equivalently, if M is a direct summand of a permutation module.

Definition (Brauer construction)

Given P ∈ sp(G), the Brauer construction is an additive functor
−(P ) ∶ kGtriv → k[NG(P )/P ]triv.

For M,N ∈ kGtriv, we have a natural isomorphism

(M ⊗k N)(P ) ≅M(P )⊗k N(P ).

Think of the Brauer construction as a “modular fixed points” functor. Indeed,
k[X](P ) ≅ k[XP ].

Sam K. Miller University of California, Santa Cruz

Endotrivial complexes



Introduction Endotrivial complexes h-marks and homology Classification

Preliminaries

Definition (p-permutation)

A kG-module M is a

permutation module if M ≅ k[X] for some G-set X.

p-permutation module if for S ∈ Sylp(G), resGS M is a permutation module, or
equivalently, if M is a direct summand of a permutation module.

Definition (Brauer construction)

Given P ∈ sp(G), the Brauer construction is an additive functor
−(P ) ∶ kGtriv → k[NG(P )/P ]triv.

For M,N ∈ kGtriv, we have a natural isomorphism

(M ⊗k N)(P ) ≅M(P )⊗k N(P ).

Think of the Brauer construction as a “modular fixed points” functor. Indeed,
k[X](P ) ≅ k[XP ].

Sam K. Miller University of California, Santa Cruz

Endotrivial complexes



Introduction Endotrivial complexes h-marks and homology Classification

Endotrivial complexes

Definition

A bounded chain complex C ∈ Chb(kGtriv) is endotrivial if

Endk(C) ≅ C∗ ⊗k C ≃ k[0].

i.e. C∗ ⊗k C ≅ k[0]⊕D for some contractible chain complex D. C is an
invertible object of Kb(kGtriv).

Let Ek(G) denote the set of homotopy classes of endotrivial kG-complexes.
(Ek(G),⊗k) forms an abelian group, and is the Picard group of Kb(kGtriv).

Sam K. Miller University of California, Santa Cruz

Endotrivial complexes



Introduction Endotrivial complexes h-marks and homology Classification

Endotrivial complexes

Definition

A bounded chain complex C ∈ Chb(kGtriv) is endotrivial if

Endk(C) ≅ C∗ ⊗k C ≃ k[0].

i.e. C∗ ⊗k C ≅ k[0]⊕D for some contractible chain complex D. C is an
invertible object of Kb(kGtriv).
Let Ek(G) denote the set of homotopy classes of endotrivial kG-complexes.
(Ek(G),⊗k) forms an abelian group, and is the Picard group of Kb(kGtriv).

Sam K. Miller University of California, Santa Cruz

Endotrivial complexes



Introduction Endotrivial complexes h-marks and homology Classification

Examples

Let char(k) = p = 2. Examples:

1 kC2 ↠ k

2 Let n ≥ 3 and let H1,H2 be noncentral, nonconjugate subgroups of D2n of order
2.

k[D2n/H1]

kD2n ⊕ k

k[D2n/H2]
The homomorphisms are induced from G-set homomorphisms
G/H → G/K,gH ↦ gK.

Sam K. Miller University of California, Santa Cruz
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Splendid Rickard equivalences

Endotrivial complexes induce “diagonal” splendid Rickard autoequivalences! These are
derived equivalences which are predicted to exist by Broué’s abelian defect group
conjecture.

Theorem

Let C be an endotrivial complex of kG-modules. Let ϕ ∈ Aut(G) and set

∆ϕG = {(ϕ(g), g) ∈ G ×G ∣ g ∈ G} ≅ G.

indG×G∆ϕG C, regarded as a chain complex of (kG, kG)-bimodules, is a splendid Rickard

autoequivalence of kG.

Sam K. Miller University of California, Santa Cruz
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Orthogonal units

The trivial source ring T (kG) is the Grothendieck group of kGtriv.

O(T (kG)) = {u ∈ T (kG)× ∶ u−1 = u∗}.

Theorem

Let C be an endotrivial complex.

Λ(C) =∑
i∈Z
(−1)i[Ci] ∈ O(T (kG)),

and Λ ∶ Ek(G)→ O(T (kG)) is a well defined group homomorphism.

In general, Λ is not surjective, which is shown via a Galois invariance condition.

Conjecture: Λ ∶ EFp(G)→ O(T (FpG)) is surjective.

Sam K. Miller University of California, Santa Cruz
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Homology

If C is endotrivial, then there is a unique i ∈ Z for which Hi(C) ≠ 0.

For any P ∈ sp(G), the Brauer construction induces a group homomorphism
−(P ) ∶ Ek(G)→ Ek(NG(P )/P ).

Theorem

Let C ∈ Chb(kGtriv). The following are equivalent:

C is endotrivial.

For every P ∈ sP (G), C(P ) has nonzero homology in exactly one degree, and
that homology has k-dimension 1. That is, C(P ) is an invertible object in
Db(kGtriv).

Sam K. Miller University of California, Santa Cruz
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h-marks

Definition

If C is endotrivial and P ∈ sp(G), let hC(P ) denote the degree in which C(P )
has nontrivial homology. Say hC(P ) is the h-mark of C at P .

Denote the group of Z-valued class functions on p-subgroups of G by C(G,p).
hC ∈ C(G,p).

Question: How much do “local” homological properties, like the h-marks, determine
the structure of an endotrivial complex?

Answer: Almost entirely!

Sam K. Miller University of California, Santa Cruz
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The h-mark homomorphism

Theorem

h ∶ Ek(G)→ C(G,p)
[C]↦ hC

is a well-defined group homomorphism, with kerh ≅ Hom(G,k×), the torsion
subgroup of Ek(G).

In particular, Ek(G) is finitely generated with Z-rank bounded by the number of
conjugacy classes of p-subgroups of G. If G is a p-group, h is injective.

We call h the h-mark homomorphism.

Sam K. Miller University of California, Santa Cruz
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Results for p-groups

The group of class functions C(G,p) has a subgroup Cb(G,p), the subgroup of
Borel-Smith functions. These arise from homotopy representations of the sphere, and
as the kernel of the Bouc homomorphism.

Theorem (abridged version)

Let G be a p-group.

1 h ∶ Ek(G)→ Cb(G,p) is a group isomorphism. In particular, Ek(G) has rank
equal to the number of cyclic subgroups of G.

2 We may assign rational p-biset functor structure to Ek via transport. Restriction,
inflation, and deflation are all what we expect, but induction is not tensor
induction.

3 Λ ∶ Ek(G)→ O(T (kG)) is surjective.

4 Given any p-permutation autoequivalence γ of kG, there exists a splendid Rickard
autoequivalence X of kG for which Λ(X) = γ.

Sam K. Miller University of California, Santa Cruz
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inflation, and deflation are all what we expect, but induction is not tensor
induction.

3 Λ ∶ Ek(G)→ O(T (kG)) is surjective.

4 Given any p-permutation autoequivalence γ of kG, there exists a splendid Rickard
autoequivalence X of kG for which Λ(X) = γ.
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Results for non-p-groups

Theorem

Let G be a finite group and S ∈ Sylp(G).

resGS ∶ Ek(G)→ Ek(S)

has image Ek(S)F ≤ Ek(S), the fusion-stable subgroup of Ek(S) which consists of
elements [C] ∈ Ek(S) for which hC(P ) = hC(Q) for all G-conjugate P,Q ≤ S.

Corollary

Ek(G) ≅ Ek(S)F ×Hom(G,k×) ≅ Cb(G,p) ×Hom(G,k×).

Sam K. Miller University of California, Santa Cruz
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Thank you!!

www.samkmiller.com
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