Sam K. Miller $^{\rm 1}$

¹University of California, Santa Cruz

June 7, 2024

arXiv:2403.04088, 2402.08042, 2309.12138

Sam K. N	1iller
Endotrivia	l complexes

University of California, Santa Cruz

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Classification

Conventions & Notation

- $\blacksquare~G$ is a finite group.
- k is a field of characteristic p > 0.
- $s_p(G)$ denotes the set of *p*-subgroups of *G*.
- $\operatorname{Syl}_p(G)$ denotes the set of Sylow *p*-subgroups of *G*.
- All kG-modules are finitely generated.
- $_{kG}\mathbf{triv}$ is the category of f.g. *p*-permutation *kG*-modules.

э.

医水管医水管医下

Introduction
0000

Why care?

Why should you care about endotrivial complexes?

University of California, Santa Cruz

Why should you care about endotrivial complexes?

• They are the invertible objects of $K^b(_{kG} triv)$, which admits a Verdier quotient equivalent to $D^b(_{kG} mod)$, due to Balmer and Gallauer.

University of California, Santa Cruz

Why should you care about endotrivial complexes?

- They are the invertible objects of $K^b(_{kG} triv)$, which admits a Verdier quotient equivalent to $D^b(_{kG} mod)$, due to Balmer and Gallauer.
- They induce "diagonal" splendid Rickard autoequivalences over \mathbb{F}_p , up to a twist.

3

> < 프 > < 프 >

Why should you care about endotrivial complexes?

- They are the invertible objects of $K^b(_{kG} triv)$, which admits a Verdier quotient equivalent to $D^b(_{kG} mod)$, due to Balmer and Gallauer.
- They induce "diagonal" splendid Rickard autoequivalences over \mathbb{F}_p , up to a twist.
- They are generalizations of endotrivial modules, and are connected to endo-p-permutation modules.

イロト (個) (目) (日) (日) (の)

Why should you care about endotrivial complexes?

- They are the invertible objects of $K^b(_{kG} triv)$, which admits a Verdier quotient equivalent to $D^b(_{kG} mod)$, due to Balmer and Gallauer.
- They induce "diagonal" splendid Rickard autoequivalences over \mathbb{F}_p , up to a twist.
- They are generalizations of endotrivial modules, and are connected to endo-p-permutation modules.
- They categorify the orthogonal unit group of the trivial source ring, O(T(kG)).

· · · 문 · · 문 · · 문

Why should you care about endotrivial complexes?

- They are the invertible objects of $K^b(_{kG} triv)$, which admits a Verdier quotient equivalent to $D^b(_{kG} mod)$, due to Balmer and Gallauer.
- They induce "diagonal" splendid Rickard autoequivalences over \mathbb{F}_p , up to a twist.
- They are generalizations of endotrivial modules, and are connected to endo-p-permutation modules.
- They categorify the orthogonal unit group of the trivial source ring, O(T(kG)).
- The group $\mathcal{E}_k(G)$ of endotrivial complexes forms a rational *p*-biset functor, and is the Picard group of $K^b(_{kG} \mathbf{triv})$.

Why should you care about endotrivial complexes?

- They are the invertible objects of $K^b(_{kG} triv)$, which admits a Verdier quotient equivalent to $D^b(_{kG} mod)$, due to Balmer and Gallauer.
- They induce "diagonal" splendid Rickard autoequivalences over \mathbb{F}_p , up to a twist.
- They are generalizations of endotrivial modules, and are connected to endo-p-permutation modules.
- They categorify the orthogonal unit group of the trivial source ring, O(T(kG)).
- The group $\mathcal{E}_k(G)$ of endotrivial complexes forms a rational *p*-biset functor, and is the Picard group of $K^b(_{kG} \mathbf{triv})$.
- A main result: We have classified all endotrivial complexes!

· · · 문 · · 문 · · 문

Introduction
0000

h-marks and homology

Motivation: endotrivial modules

A kG-module M is endotrivial if $M^* \otimes_k M \cong k \oplus P$, for some projective module P, i.e. $M^* \otimes_k M \cong k \in \text{stmod}(kG)$. These are the invertible objects of stmod(kG).

University of California, Santa Cruz

h-marks and homology

Motivation: endotrivial modules

A kG-module M is endotrivial if $M^* \otimes_k M \cong k \oplus P$, for some projective module P, i.e. $M^* \otimes_k M \cong k \in \text{stmod}(kG)$. These are the invertible objects of stmod(kG).

 $T_k(G) \coloneqq \{[M] \in \mathsf{stmod}(kG) \mid M \text{ is endotrivial}\}.$

The group $(T_k(G), \otimes_k)$ parameterizes endotrivial modules - it is the Picard group of stmod(kG).

h-marks and homology

Classification

Motivation: endotrivial modules

A kG-module M is endotrivial if $M^* \otimes_k M \cong k \oplus P$, for some projective module P, i.e. $M^* \otimes_k M \cong k \in \text{stmod}(kG)$. These are the invertible objects of stmod(kG).

 $T_k(G) \coloneqq \{[M] \in \mathsf{stmod}(kG) \mid M \text{ is endotrivial}\}.$

The group $(T_k(G), \otimes_k)$ parameterizes endotrivial modules - it is the Picard group of stmod(kG).

Known results

- $T_k(G)$ is finitely generated abelian. (Puig '90, CMN '06)
- $T_k(G)$ is determined for *p*-groups. (CT '00-'05)
- $T_k(G)$ is determined for somme finite groups of Lie type (CMN '06)
- …and many, many more!

Determining $T_k(G)$ for all groups remains open.

Introduction
0000

Preliminaries

Definition (*p***-permutation)**

- A $kG\operatorname{\mathsf{-module}} M$ is a
 - permutation module if $M \cong k[X]$ for some G-set X.
 - *p*-permutation module if for $S \in Syl_p(G)$, $res_S^G M$ is a permutation module, or equivalently, if M is a direct summand of a permutation module.

University of California, Santa Cruz

Introduction
0000

Preliminaries

Definition (*p*-permutation)

- A kG-module M is a
 - **permutation module** if $M \cong k[X]$ for some G-set X.
 - **p**-permutation module if for $S \in Syl_p(G)$, $\operatorname{res}_S^G M$ is a permutation module, or equivalently, if M is a direct summand of a permutation module.

Definition (Brauer construction)

- Given $P \in s_p(G)$, the Brauer construction is an additive functor $-(P): {}_{kG}\mathbf{triv} \rightarrow {}_{k[N_G(P)/P]}\mathbf{triv}.$
- For $M, N \in {}_{kG}\mathbf{triv}$, we have a natural isomorphism

 $(M \otimes_k N)(P) \cong M(P) \otimes_k N(P).$

University of California, Santa Cruz

メロト (個) (目) (日) (日) (日) (の)

Preliminaries

Definition (*p***-permutation)**

- A $kG\operatorname{\mathsf{-module}} M$ is a
 - **permutation module** if $M \cong k[X]$ for some G-set X.
 - **p**-permutation module if for $S \in Syl_p(G)$, $\operatorname{res}_S^G M$ is a permutation module, or equivalently, if M is a direct summand of a permutation module.

Definition (Brauer construction)

- Given $P \in s_p(G)$, the Brauer construction is an additive functor $-(P): {}_{kG}\mathbf{triv} \rightarrow {}_{k[N_G(P)/P]}\mathbf{triv}.$
- For $M, N \in {}_{kG}\mathbf{triv}$, we have a natural isomorphism

 $(M \otimes_k N)(P) \cong M(P) \otimes_k N(P).$

Think of the Brauer construction as a "modular fixed points" functor. Indeed, $k[X](P)\cong k[X^P].$

Sam K. Miller Endotrivial complexes ◆ □ ▶ < 三 ▶ < 三 ▶ 三 少 へ ○</p>
University of California, Santa Cruz

Endotrivial complexes

Definition

• A bounded chain complex $C \in Ch^b(_{kG} triv)$ is endotrivial if

 $\operatorname{End}_k(C) \cong C^* \otimes_k C \simeq k[0].$

i.e. $C^* \otimes_k C \cong k[0] \oplus D$ for some contractible chain complex D. C is an invertible object of $K^b(_{kG} \mathbf{triv})$.

University of California, Santa Cruz

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Endotrivial complexes

Definition

• A bounded chain complex $C \in Ch^b({}_{kG}\mathbf{triv})$ is endotrivial if

 $\operatorname{End}_k(C) \cong C^* \otimes_k C \simeq k[0].$

i.e. $C^* \otimes_k C \cong k[0] \oplus D$ for some contractible chain complex D. C is an invertible object of $K^b(_{kG} triv)$.

• Let $\mathcal{E}_k(G)$ denote the set of homotopy classes of endotrivial kG-complexes. $(\mathcal{E}_k(G), \otimes_k)$ forms an abelian group, and is the Picard group of $K^b(_{kG}\mathbf{triv})$.

Introduction	Endotrivial complexes	h-marks and homology 000	Classification

Examples

Let char(k) = p = 2. Examples:

University of California, Santa Cruz

Introduction	Endotrivial complexes ○●○○	h-marks and homology 000	Classification

Examples

Let char(k) = p = 2. Examples: $kC_2 \twoheadrightarrow k$

University of California, Santa Cruz

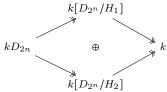
Introduction	Endotrivial complexes ○●○○	h-marks and homology 000	Classification

Examples

Let char(k) = p = 2. Examples:

1 $kC_2 \twoheadrightarrow k$

2 Let $n \ge 3$ and let H_1, H_2 be noncentral, nonconjugate subgroups of D_{2^n} of order 2.



The homomorphisms are induced from G-set homomorphisms $G/H \to G/K, gH \mapsto gK.$

University of California, Santa Cruz

э

글 🕨 🖌 글 🕨

Splendid Rickard equivalences

Endotrivial complexes induce "diagonal" splendid Rickard autoequivalences! These are derived equivalences which are predicted to exist by Broué's abelian defect group conjecture.

Splendid Rickard equivalences

Endotrivial complexes induce "diagonal" splendid Rickard autoequivalences! These are derived equivalences which are predicted to exist by Broué's abelian defect group conjecture.

Theorem

Let C be an endotrivial complex of kG-modules. Let $\phi \in Aut(G)$ and set

 $\Delta_{\phi}G = \{(\phi(g), g) \in G \times G \mid g \in G\} \cong G.$

 $\operatorname{ind}_{\Delta_{\phi}G}^{G\times G}C$, regarded as a chain complex of (kG, kG)-bimodules, is a splendid Rickard autoequivalence of kG.

Introduction	Endotrivial complexes	h-marks and homology	Classification
0000	○○○●	000	
Orthogonal units			

The trivial source ring T(kG) is the Grothendieck group of $_{kG}$ triv.

 $O(T(kG)) = \{ u \in T(kG)^{\times} : u^{-1} = u^{*} \}.$

University of California, Santa Cruz

Introduction	Endotrivial complexes ○○○●	h-marks and homology	Classification

Orthogonal units

The trivial source ring T(kG) is the Grothendieck group of $_{kG}$ triv.

$$O(T(kG)) = \{ u \in T(kG)^{\times} : u^{-1} = u^{*} \}.$$

Theorem

Let C be an endotrivial complex.

$$\Lambda(C) = \sum_{i \in \mathbb{Z}} (-1)^i [C_i] \in O(T(kG)),$$

and $\Lambda : \mathcal{E}_k(G) \to O(T(kG))$ is a well defined group homomorphism.

In general, Λ is not surjective, which is shown via a Galois invariance condition.

Introduction	Endotrivial complexes ○○○●	h-marks and homology	Classification

Orthogonal units

The trivial source ring T(kG) is the Grothendieck group of $_{kG}$ triv.

$$O(T(kG)) = \{ u \in T(kG)^{\times} : u^{-1} = u^{*} \}.$$

Theorem

Let C be an endotrivial complex.

$$\Lambda(C) = \sum_{i \in \mathbb{Z}} (-1)^i [C_i] \in O(T(kG)),$$

and $\Lambda : \mathcal{E}_k(G) \to O(T(kG))$ is a well defined group homomorphism.

In general, Λ is not surjective, which is shown via a Galois invariance condition.

Conjecture: $\Lambda : \mathcal{E}_{\mathbb{F}_p}(G) \to O(T(\mathbb{F}_pG))$ is surjective.

Introduction	Endotrivial complexes	h-marks and homology ●○○	Classification

Homology

If C is endotrivial, then there is a **unique** $i \in \mathbb{Z}$ for which $H_i(C) \neq 0$.

University of California, Santa Cruz

Introduction	Endotrivial complexes	h-marks and homology ●○○	Classification

- If C is endotrivial, then there is a **unique** $i \in \mathbb{Z}$ for which $H_i(C) \neq 0$.
- For any $P \in s_p(G)$, the Brauer construction induces a group homomorphism $-(P) : \mathcal{E}_k(G) \to \mathcal{E}_k(N_G(P)/P).$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの

Homology

tr	d	u	t	i	0			
0								

Homology

- If C is endotrivial, then there is a **unique** $i \in \mathbb{Z}$ for which $H_i(C) \neq 0$.
- For any $P \in s_p(G)$, the Brauer construction induces a group homomorphism $-(P) : \mathcal{E}_k(G) \to \mathcal{E}_k(N_G(P)/P).$

Theorem

Let $C \in Ch^b(_{kG} \mathbf{triv})$. The following are equivalent:

- C is endotrivial.
- For every $P \in s_P(G)$, C(P) has nonzero homology in exactly one degree, and that homology has k-dimension 1. That is, C(P) is an invertible object in $D^b(_{kG} triv)$.

メロト (個) (目) (日) (日) (日) (の)

Intr	ю	luc	:ti	

h-marks and homology ○●○

h-marks

Definition

If C is endotrivial and $P \in s_p(G)$, let $h_C(P)$ denote the degree in which C(P) has nontrivial homology. Say $h_C(P)$ is the h-mark of C at P.

University of California, Santa Cruz

h-marks and homology $\bigcirc \bigcirc \bigcirc$

h-marks

Definition

- If C is endotrivial and $P \in s_p(G)$, let $h_C(P)$ denote the degree in which C(P) has nontrivial homology. Say $h_C(P)$ is the h-mark of C at P.
- Denote the group of \mathbb{Z} -valued class functions on *p*-subgroups of *G* by C(G,p). $h_C \in C(G,p)$.

University of California, Santa Cruz

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

h-marks and homology ○●○

h-marks

Definition

- If C is endotrivial and $P \in s_p(G)$, let $h_C(P)$ denote the degree in which C(P) has nontrivial homology. Say $h_C(P)$ is the h-mark of C at P.
- Denote the group of \mathbb{Z} -valued class functions on *p*-subgroups of *G* by C(G,p). $h_C \in C(G,p)$.

Question: How much do "local" homological properties, like the h-marks, determine the structure of an endotrivial complex?

h-marks and homology ○●○

h-marks

Definition

- If C is endotrivial and $P \in s_p(G)$, let $h_C(P)$ denote the degree in which C(P) has nontrivial homology. Say $h_C(P)$ is the h-mark of C at P.
- Denote the group of \mathbb{Z} -valued class functions on *p*-subgroups of *G* by C(G,p). $h_C \in C(G,p)$.

Question: How much do "local" homological properties, like the h-marks, determine the structure of an endotrivial complex?

Answer: Almost entirely!

Classification

The h-mark homomorphism

Theorem

 $h: \mathcal{E}_k(G) \to C(G, p)$ $[C] \mapsto h_C$

is a well-defined group homomorphism, with ker $h \cong Hom(G, k^{\times})$, the torsion subgroup of $\mathcal{E}_k(G)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Classification

The h-mark homomorphism

Theorem

$$\begin{split} h: \mathcal{E}_k(G) \to C(G,p) \\ [C] \mapsto h_C \end{split}$$

is a well-defined group homomorphism, with ker $h \cong Hom(G, k^{\times})$, the torsion subgroup of $\mathcal{E}_k(G)$.

In particular, $\mathcal{E}_k(G)$ is finitely generated with \mathbb{Z} -rank bounded by the number of conjugacy classes of *p*-subgroups of *G*. If *G* is a *p*-group, *h* is injective.

We call h the h-mark homomorphism.

University of California, Santa Cruz

Introduction 0000	Endotrivial complexes	h-marks and homology	Classification ●○○
Results for p-	groups		

The group of class functions C(G,p) has a subgroup $C_b(G,p)$, the subgroup of Borel-Smith functions. These arise from homotopy representations of the sphere, and as the kernel of the Bouc homomorphism.

University of California, Santa Cruz

Classification

Results for *p***-groups**

The group of class functions C(G, p) has a subgroup $C_b(G, p)$, the subgroup of Borel-Smith functions. These arise from homotopy representations of the sphere, and as the kernel of the Bouc homomorphism.

Theorem (abridged version)

Let G be a p-group.

Classification

Results for *p*-groups

The group of class functions C(G, p) has a subgroup $C_b(G, p)$, the subgroup of Borel-Smith functions. These arise from homotopy representations of the sphere, and as the kernel of the Bouc homomorphism.

Theorem (abridged version)

Let G be a p-group.

■ $h: \mathcal{E}_k(G) \to C_b(G, p)$ is a group isomorphism. In particular, $\mathcal{E}_k(G)$ has rank equal to the number of cyclic subgroups of G.

University of California, Santa Cruz

Results for *p***-groups**

The group of class functions C(G,p) has a subgroup $C_b(G,p)$, the subgroup of Borel-Smith functions. These arise from homotopy representations of the sphere, and as the kernel of the Bouc homomorphism.

Theorem (abridged version)

Let G be a p-group.

- $\blacksquare h: \mathcal{E}_k(G) \to C_b(G, p) \text{ is a group isomorphism. In particular, } \mathcal{E}_k(G) \text{ has rank} equal to the number of cyclic subgroups of } G.$
- 2 We may assign rational *p*-biset functor structure to \mathcal{E}_k via transport. Restriction, inflation, and deflation are all what we expect, but induction is **not** tensor induction.

Results for *p***-groups**

The group of class functions C(G,p) has a subgroup $C_b(G,p)$, the subgroup of Borel-Smith functions. These arise from homotopy representations of the sphere, and as the kernel of the Bouc homomorphism.

Theorem (abridged version)

Let G be a p-group.

- $h: \mathcal{E}_k(G) \to C_b(G, p)$ is a group isomorphism. In particular, $\mathcal{E}_k(G)$ has rank equal to the number of cyclic subgroups of G.
- 2 We may assign rational *p*-biset functor structure to \mathcal{E}_k via transport. Restriction, inflation, and deflation are all what we expect, but induction is **not** tensor induction.
- $\Lambda: \mathcal{E}_k(G) \to O(T(kG))$ is surjective.

University of California, Santa Cruz

メロト (個) (目) (日) (日) (日) (の)

Results for *p***-groups**

The group of class functions C(G,p) has a subgroup $C_b(G,p)$, the subgroup of Borel-Smith functions. These arise from homotopy representations of the sphere, and as the kernel of the Bouc homomorphism.

Theorem (abridged version)

Let G be a p-group.

- $h: \mathcal{E}_k(G) \to C_b(G, p)$ is a group isomorphism. In particular, $\mathcal{E}_k(G)$ has rank equal to the number of cyclic subgroups of G.
- 2 We may assign rational *p*-biset functor structure to \mathcal{E}_k via transport. Restriction, inflation, and deflation are all what we expect, but induction is **not** tensor induction.
- $\Lambda: \mathcal{E}_k(G) \to O(T(kG))$ is surjective.
- Given any *p*-permutation autoequivalence γ of kG, there exists a splendid Rickard autoequivalence X of kG for which $\Lambda(X) = \gamma$.

Results for non-*p***-groups**

Theorem

Let G be a finite group and $S \in Syl_p(G)$.

$$\operatorname{res}_S^G: \mathcal{E}_k(G) \to \mathcal{E}_k(S)$$

has image $\mathcal{E}_k(S)^{\mathcal{F}} \leq \mathcal{E}_k(S)$, the fusion-stable subgroup of $\mathcal{E}_k(S)$ which consists of elements $[C] \in \mathcal{E}_k(S)$ for which $h_C(P) = h_C(Q)$ for all *G*-conjugate $P, Q \leq S$.

University of California, Santa Cruz

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Results for non-*p***-groups**

Theorem

Let G be a finite group and $S \in Syl_p(G)$.

$$\operatorname{res}_S^G: \mathcal{E}_k(G) \to \mathcal{E}_k(S)$$

has image $\mathcal{E}_k(S)^{\mathcal{F}} \leq \mathcal{E}_k(S)$, the fusion-stable subgroup of $\mathcal{E}_k(S)$ which consists of elements $[C] \in \mathcal{E}_k(S)$ for which $h_C(P) = h_C(Q)$ for all *G*-conjugate $P, Q \leq S$.

Corollary

$$\mathcal{E}_k(G) \cong \mathcal{E}_k(S)^{\mathcal{F}} \times \operatorname{Hom}(G, k^{\times}) \cong C_b(G, p) \times \operatorname{Hom}(G, k^{\times}).$$

Sam K. Miller Endotrivial complexes University of California, Santa Cruz

Thank you!!

www.samkmiller.com

・ロト・(型・・ヨ・・ヨ・ つへの

Sam K. Miller Endotrivial complexes University of California, Santa Cruz