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Suppose that a finite group G acts on a finite dimensional C-vector space V via linear
transformations. Let xj, xo, ... , X, be a basis of the dual space V*. Then we have a
G-action on the coordinate ring C[V] = C[x1, ..., x]:

for c € G and f € C[V] we have: o - f(x1,x2, ... ,xn) =f(0-X1,0-X2,...,0 - Xn)
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Suppose that a finite group G acts on a finite dimensional C-vector space V via linear
transformations. Let xj, xo, ... , X, be a basis of the dual space V*. Then we have a
G-action on the coordinate ring C[V] = C[x1, ..., x]:

for c € G and f € C[V] we have: o - f(x1,x2, ... ,xn) =f(0-X1,0-X2,...,0 - Xn)

The invariant subalgebra C[V]¢ := {f € C[V] : 0 - f = f, for Yo € G} is generated by
homogeneous polynomials of degree < |G| by a theorem of Noether. This motivates
the definition of the Noether number. denote by (G, V) the maximal degree in a
minimal homogeneous generating system of the algebra C[V]C.

B(G) = sup{B(G, V)| V finite dimensional}
%
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A subset S C C[V]€ is called separating set if the following holds:

if for vi, vy € V there exists h € C[V]® such that h(v1) # h(v2), then there exists
f €S, such that f(v1) # f(v2)
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A subset S C C[V]€ is called separating set if the following holds:

if for vi, vy € V there exists h € C[V]® such that h(v1) # h(v2), then there exists
f €S, such that f(v1) # f(v2)

If G is a finite group, then a subset S C C[V]€ is a separating set if and only if:

Gvi # Gv, implies the existence of an f € S, such that f(v1) # f(v2)
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A subset S C C[V]€ is called separating set if the following holds:

if for vi, vy € V there exists h € C[V]® such that h(v1) # h(v2), then there exists
f €S, such that f(v1) # f(v2)

If G is a finite group, then a subset S C C[V]€ is a separating set if and only if:

Gvi # Gv, implies the existence of an f € S, such that f(v1) # f(v2)

Definition

Let Bsep(G, V) be the minimal positive integer d such that C[V]® contains a
separating set whose elements are homogeneous polynomials of degree at most d. The
separating Noether number Bsep(G) of a finite group G is

Bsep(G) := sup{Bsep(G, V) : V finite dimensional}
%
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m 3(G,V)<B(G,V+ V')
L ,B(G, Vreg) = B(G)
m if H< G, then B(H) < B(G)
m 3(G) <|G|.
The same facts are also true for Bsep.
B Bsep(G, V) < B(G, V), hence
= Beep(G) < B(G)
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Let C[V] =Clx,y], G := CG3 = (o) and 0 — (cg w91>' (w third root of unity).
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Example

w 0
0 wl

Let C[V] =Clx,y], G := CG3 = (o) and 0 — ( ) (w third root of unity).

For f(x,y) = Y- ajx'y! € Clx,y], we have o - f(x,y) = 3~ ajw'™/x'y/.
C[V]© = C[x3, %, xy], s0 B(C3, V) = 3.
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Example
w 0
0 w!
For f(x,y) =Y ajx'y’ € Clx,y], we have o - f(x,y) =Y ajw Ix'y/.

C[V]© = C[x3,y3, xy], so B(G3, V) = 3.

Separating set with invariants of deg at most 27 Only possibility: S = {xy}. This is
not a separating set: (1,1) and (3,2) are not separated, but are in different orbits. So
Bsep(C3, V) > 2, and Bsep(C3, V) < B(G3, V) = 3, hence Bsep(C3, V) = 3.
({x3,y3,xy} is a separating set.)

Let C[V] =Clx,y], G := CG3 = (o) and 0 — ( ) (w third root of unity).
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Example

w 0
0 wl

Let C[V] =Clx,y], G := CG3 = (o) and 0 — ( ) (w third root of unity).

For f(x,y) =Y ajx'y’ € Clx,y], we have o - f(x,y) =Y ajw Ix'y/.

C[V]© = C[x3, y3,xy], so B(C3, V) = 3.

Separating set with invariants of deg at most 27 Only possibility: S = {xy}. This is
not a separating set: (1,1) and (3,2) are not separated, but are in different orbits. So
Bsep(C3, V) > 2, and Bsep(C3, V) < B(G3, V) = 3, hence Bsep(C3, V) = 3.
({x3,y3,xy} is a separating set.)

In general:

Theorem (B. Schmid, 1990)
Bsep(Cn) = B(C,) = n. Moreover for any noncyclic finite group G: 5(G) < |G].
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Our goal is to determine the exact value of the separating Noether number of some
infinite families of abelian groups.
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Our goal is to determine the exact value of the separating Noether number of some
infinite families of abelian groups.

For a finite abelian group 5(G) = D(G)
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Let g1,..., 8« be distinct elements of the (additively written) finite abelian group G.

G(gr,- - gk) = {lm,...,m] € ZF: 31 migi = 0 € G}

is a subgroup of the additive group of Z¥. The block monoid is defined as:

B(glv"‘ 7gk) = Nk mg(g17 7gk)
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Let g1,..., 8« be distinct elements of the (additively written) finite abelian group G.
Glg1,- - 8k) = {[m,....,m] €Z¥ .5 mg =0e G}
is a subgroup of the additive group of Z¥. The block monoid is defined as:
Blgi, -, 8k) = NNG(gr, ..., &)

If g1,...,8k is an enumeration of all the elements of G, then B(G) := B(gi, - - -, &)
The length of an element m = [my, ..., my] € B(gi1,...,8«) is |m| = Zf-‘zl m;.
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Let g1,..., 8« be distinct elements of the (additively written) finite abelian group G.
Glg1,- - 8k) = {[m,....,m] €Z¥ .5 mg =0e G}
is a subgroup of the additive group of Z¥. The block monoid is defined as:
Blgi, -, 8k) = NNG(gr, ..., &)

If g1,...,8k is an enumeration of all the elements of G, then B(G) := B(gi, - - -, &)
The length of an element m = [my, ..., my] € B(gi1,...,8«) is |m| = Zf-‘zl m;.

Remark

m we do not care about the order about in which the elements are written in
B(g1, - - -, 8k)
m the neutral element 0 can be omitted
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Definition
An element of B(gu, - .., 8«k) is an atom, if it can not be written as the sum of two
non-zero elements of B(g1, . . ., 8k)-

The maximal length of an atom in B(G) is the Davenport constant D(G) of the group.
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Definition

An element of B(gu, - .., 8«k) is an atom, if it can not be written as the sum of two
non-zero elements of B(g1, . . ., 8k)-

The maximal length of an atom in B(G) is the Davenport constant D(G) of the group.
Let G=Cp,®Cp,®---® Cp,, where 2 < n, | n_1|---| n. Let ¢; be a genarator of
Cp,;, and introduce the notation € := Y7, ;. Then

e+ > _1(nj—1)e;=0¢€ G, hence [1,n; — 1,...,n, — 1] € B(e,e1,...,&,) is an atom
So for any abelian group G, >°7_,(n; — 1) + 1 < D(G).
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An element of B(gu, - .., 8«k) is an atom, if it can not be written as the sum of two
non-zero elements of B(g, - . ., 8k)-

The maximal length of an atom in B(G) is the Davenport constant D(G) of the group.
Let G=Cp,®Cp,®---® Cp,, where 2 < n, | n_1|---| n. Let ¢; be a genarator of
Cp,;, and introduce the notation € := Y7, ;. Then

e+ > _1(nj—1)e;=0¢€ G, hence [1,n; — 1,...,n, — 1] € B(e,e1,...,&,) is an atom
So for any abelian group G, >°7_,(n; — 1) + 1 < D(G).
Theorem (J. Olson, 1969)

(i) If G = Cy, @ Cp, is finite abelian group of rank two, then D(G) = ny + np — 1
(it) If G is a finite abelian p-group, then D(G) =57 (nj —1)+1
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Let us have G = G, & C,, and denote by {0, a, b, c} the elements of the group.
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Example

Let us have G = C; ® G, and denote by {0, a, b, c} the elements of the group.
a+a=0, hence my =[2,0,0] € B(a, b, c) with |m1| =2

b+ b =0, hence my = [0,2,0] € B(a, b, c) with |ma| =2

¢+ c =0, hence m3 =[0,0,2] € B(a, b, c) with |m3| =2

a+b+c=0, hence my = [1,1,1] € B(a, b, c) with |ma| =3

Of course, the maximal length of the atoms is 3, so D(G) = 3.
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B(G) = D(G) +— max length of atoms in B(G)
Bsep(G) «—7
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B(G) = D(G) +— max length of atoms in B(G)
Bsep(G) «—7

An element of B(gi, . ..,gk) is an atom, if it can not be written as the sum of two
non-zero elements of B(g, - . ., 8k)-
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B(G) = D(G) <— max length of atoms in B(G)
Bsep(G) «—7

An element of B(gu, - .., 8«k) is an atom, if it can not be written as the sum of two
non-zero elements of B(g, - . ., 8k)-

A group atom in B(gi1, ..., 8k) is such an element m, that can not be written as an

integral linear combination of elements of B(gi, ..., gk) that have length strictly
smaller than |m|.
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Let G = Cip @ G4, and [11, 173] € B(El,z’:‘l +€2,€2).
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Example

Let G = Cip ® (4, and [11, 173] S B(El,z’il I 82762).

If[11,1,3] is the sum of two elements of the monoid, then one of them must have 0 in
the second coordinate: [my,0, m3] € B(e1,e1 + €2,£2), so me1 + m3ep =0 € G.
Hence 12 = ord(e1)|my and 4 = ord(e3)|ms3, and then my = m3 = 0, since m; < 11,
m3 < 3. So [11,1,3] is an atom in B(e1,e1 + €2,€2).
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Example

Let G = Cip ® (4, and [117 173] S B(El,z’il I 82762).

If[11,1,3] is the sum of two elements of the monoid, then one of them must have 0 in
the second coordinate: [my,0, m3] € B(e1,e1 + €2,£2), so me1 + m3ep =0 € G.
Hence 12 = ord(e1)|my and 4 = ord(e3)|ms3, and then my = m3 = 0, since m; < 11,
m3 < 3. So [11,1,3] is an atom in B(e1,e1 + €2,€2).

It is not a group atom, since it can be written as an integral linear combination of such
elements of B(e1,e1 + €2,€2) that have length strictly smaller than 11 +1 + 3 = 15:
[11,1,3] = 7[5,7,1] — 2[12,0,0] — 4[0,12,0] — [0, 0, 4].
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Theorem [M. Domokos, 2017]

The number Bsep(G) is the maximal length of a group atom in B(gi, ..., gk), where
{g1,..., 8k} ranges over all subsets of size k < rank(G) + 1 of the abelian group G.

B(G) +— max length of atoms in B(G)
Bsep(G) <—> max length of the group atoms in any of the listed block monoids
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For any abelian group G, >/ ,(n; — 1) +1 < D(G)
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For any abelian group G, >/ ,(n; — 1) +1 < D(G)
A finite abelian group of rank 2 can be written in the form G = C,; & C,, where £ > 1.

Theorem [J. Olson, 1969]
D(Cre ® Cn) = nl+ n—1.
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For any abelian group G, >/ ,(n; — 1) +1 < D(G)
A finite abelian group of rank 2 can be written in the form G = C,; & C,, where £ > 1.

Theorem [J. Olson, 1969]

D(Cre ® Cn) = nl+ n—1.

Theorem [S., 2023]

Let ¢, n be positive integers and denote with p the minimal prime divisor of n. Then:

5sep(Cn£ SY Cn) = nf+g
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Theorem |[S., 2023]

For positive integers n > 2 and r denote by C; the direct sum C, & --- & C, of r
copies of the cyclic group C, of order n, and let p be the minimal prime divisor of n.
Then we have

ns, if r=2s—1is odd

ns + %, if r = 2s is even.

Bsep(Cr) = {
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Theorem |[S., 2023]

For positive integers n > 2 and r denote by C; the direct sum C, & --- & C, of r
copies of the cyclic group C, of order n, and let p be the minimal prime divisor of n.
Then we have

ns, if r=2s—1is odd

ns + %, if r = 2s is even.

Bsep(Cr) = {

Conjecture

For the direct sum C; of r copies of the cyclic group of order n: D(C}) =1+ (n—1)r
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[§ B. Schefler: The separating Noether number of the direct sum of several copies of
a cyclic group, https://doi.org/10.48550/arXiv.2311.09903

[§ B. Schefler: The separating Noether number of abelian groups of rank two,
https://doi.org/10.48550/arXiv.2403.13200
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Thank you for your attention!
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