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Suppose that a finite group G acts on a finite dimensional C-vector space V via linear
transformations. Let x1, x2, ... , xn be a basis of the dual space V ∗. Then we have a
G -action on the coordinate ring C[V ] = C[x1, ..., xn]:

for σ ∈ G and f ∈ C[V ] we have: σ · f (x1, x2, ... , xn) = f (σ · x1, σ · x2, . . . , σ · xn)

The invariant subalgebra C[V ]G := {f ∈ C[V ] : σ · f = f , for ∀σ ∈ G} is generated by
homogeneous polynomials of degree ≤ |G | by a theorem of Noether. This motivates
the definition of the Noether number: denote by β(G ,V ) the maximal degree in a
minimal homogeneous generating system of the algebra C[V ]G .

β(G ) = sup
V
{β(G ,V )| V finite dimensional}
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Separating Noether number of finite abelian groups



Invariant theory Zero-sum sequences over finite abelian groups Some new results

Suppose that a finite group G acts on a finite dimensional C-vector space V via linear
transformations. Let x1, x2, ... , xn be a basis of the dual space V ∗. Then we have a
G -action on the coordinate ring C[V ] = C[x1, ..., xn]:

for σ ∈ G and f ∈ C[V ] we have: σ · f (x1, x2, ... , xn) = f (σ · x1, σ · x2, . . . , σ · xn)

The invariant subalgebra C[V ]G := {f ∈ C[V ] : σ · f = f , for ∀σ ∈ G} is generated by
homogeneous polynomials of degree ≤ |G | by a theorem of Noether. This motivates
the definition of the Noether number: denote by β(G ,V ) the maximal degree in a
minimal homogeneous generating system of the algebra C[V ]G .

β(G ) = sup
V
{β(G ,V )| V finite dimensional}
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A subset S ⊂ C[V ]G is called separating set if the following holds:

if for v1, v2 ∈ V there exists h ∈ C[V ]G such that h(v1) ̸= h(v2), then there exists
f ∈ S , such that f (v1) ̸= f (v2)

If G is a finite group, then a subset S ⊂ C[V ]G is a separating set if and only if:

Gv1 ̸= Gv2 implies the existence of an f ∈ S , such that f (v1) ̸= f (v2)

Definition

Let βsep(G ,V ) be the minimal positive integer d such that C[V ]G contains a
separating set whose elements are homogeneous polynomials of degree at most d. The
separating Noether number βsep(G ) of a finite group G is

βsep(G ) := sup
V
{βsep(G ,V ) : V finite dimensional}
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Separating Noether number of finite abelian groups



Invariant theory Zero-sum sequences over finite abelian groups Some new results

Properties

β(G ,V ) ≤ β(G ,V + V ′)

β(G ,Vreg ) = β(G )

if H ≤ G , then β(H) ≤ β(G )

β(G ) ≤ |G |.
The same facts are also true for βsep.

βsep(G ,V ) ≤ β(G ,V ), hence

βsep(G ) ≤ β(G )
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Example

Let C[V ] = C[x , y ], G := C3 = ⟨σ⟩ and σ 7→
(
ω 0
0 ω−1

)
, (ω third root of unity).

For f (x , y) =
∑

aijx
iy j ∈ C[x , y ], we have σ · f (x , y) =

∑
aijω

i−jx iy j .
C[V ]C3 = C[x3, y3, xy ], so β(C3,V ) = 3.
Separating set with invariants of deg at most 2? Only possibility: S = {xy}. This is
not a separating set: (1, 1) and (12 , 2) are not separated, but are in different orbits. So
βsep(C3,V ) > 2, and βsep(C3,V ) ≤ β(C3,V ) = 3, hence βsep(C3,V ) = 3.
({x3, y3, xy} is a separating set.)

In general:

Theorem (B. Schmid, 1990)

βsep(Cn) = β(Cn) = n. Moreover for any noncyclic finite group G: β(G ) < |G |.
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Question

Our goal is to determine the exact value of the separating Noether number of some
infinite families of abelian groups.

Fact

For a finite abelian group β(G ) = D(G )
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Let g1, . . . , gk be distinct elements of the (additively written) finite abelian group G .

G(g1, . . . , gk) := {[m1, . . . ,mk ] ∈ Zk :
∑k

i=1migi = 0 ∈ G}

is a subgroup of the additive group of Zk . The block monoid is defined as:

B(g1, . . . , gk) := Nk ∩ G(g1, . . . , gk)

If g1, . . . , gk is an enumeration of all the elements of G , then B(G ) := B(g1, . . . , gk).
The length of an element m = [m1, . . . ,mk ] ∈ B(g1, . . . , gk) is |m| =

∑k
i=1mi .

Remark

we do not care about the order about in which the elements are written in
B(g1, . . . , gk)
the neutral element 0 can be omitted
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Definition

An element of B(g1, . . . , gk) is an atom, if it can not be written as the sum of two
non-zero elements of B(g1, . . . , gk).

The maximal length of an atom in B(G ) is the Davenport constant D(G ) of the group.

Let G = Cn1 ⊕ Cn2 ⊕ · · · ⊕ Cnr , where 2 ≤ nr | nr−1 | · · · | n1. Let εi be a genarator of
Cni , and introduce the notation ε :=

∑r
i=1 εi . Then

ε+
∑r

i=1(ni − 1)εi = 0 ∈ G , hence [1, n1 − 1, ..., nr − 1] ∈ B(ε, ε1, ..., εr ) is an atom

So for any abelian group G ,
∑r

i=1(ni − 1) + 1 ≤ D(G ).

Theorem (J. Olson, 1969)

(i) If G = Cn1 ⊕ Cn2 is finite abelian group of rank two, then D(G ) = n1 + n2 − 1

(ii) If G is a finite abelian p-group, then D(G ) =
∑r

i=1(ni − 1) + 1
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Example

Let us have G = C2 ⊕ C2, and denote by {0, a, b, c} the elements of the group.

a+ a = 0, hence m1 = [2, 0, 0] ∈ B(a, b, c) with |m1| = 2
b + b = 0, hence m2 = [0, 2, 0] ∈ B(a, b, c) with |m2| = 2
c + c = 0, hence m3 = [0, 0, 2] ∈ B(a, b, c) with |m3| = 2
a+ b + c = 0, hence m4 = [1, 1, 1] ∈ B(a, b, c) with |m4| = 3
Of course, the maximal length of the atoms is 3, so D(G ) = 3.
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β(G ) = D(G )←→ max length of atoms in B(G )
βsep(G )←→?

Definition

An element of B(g1, . . . , gk) is an atom, if it can not be written as the sum of two
non-zero elements of B(g1, . . . , gk).

Definition

A group atom in B(g1, . . . , gk) is such an element m, that can not be written as an
integral linear combination of elements of B(g1, . . . , gk) that have length strictly
smaller than |m|.
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Example

Let G = C12 ⊕ C4, and [11, 1, 3] ∈ B(ε1, ε1 + ε2, ε2).

If [11, 1, 3] is the sum of two elements of the monoid, then one of them must have 0 in
the second coordinate: [m1, 0,m3] ∈ B(ε1, ε1 + ε2, ε2), so m1ε1 +m3ε2 = 0 ∈ G.
Hence 12 = ord(ε1)|m1 and 4 = ord(ε2)|m3, and then m1 = m3 = 0, since m1 ≤ 11,
m3 ≤ 3. So [11, 1, 3] is an atom in B(ε1, ε1 + ε2, ε2).
It is not a group atom, since it can be written as an integral linear combination of such
elements of B(ε1, ε1 + ε2, ε2) that have length strictly smaller than 11 + 1 + 3 = 15:
[11, 1, 3] = 7[5, 7, 1]− 2[12, 0, 0]− 4[0, 12, 0]− [0, 0, 4].
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m3 ≤ 3. So [11, 1, 3] is an atom in B(ε1, ε1 + ε2, ε2).

It is not a group atom, since it can be written as an integral linear combination of such
elements of B(ε1, ε1 + ε2, ε2) that have length strictly smaller than 11 + 1 + 3 = 15:
[11, 1, 3] = 7[5, 7, 1]− 2[12, 0, 0]− 4[0, 12, 0]− [0, 0, 4].
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Theorem [M. Domokos, 2017]

The number βsep(G ) is the maximal length of a group atom in B(g1, . . . , gk), where
{g1, . . . , gk} ranges over all subsets of size k ≤ rank(G ) + 1 of the abelian group G .

β(G )←→ max length of atoms in B(G )
βsep(G )←→ max length of the group atoms in any of the listed block monoids
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For any abelian group G ,
∑r

i=1(ni − 1) + 1 ≤ D(G )

A finite abelian group of rank 2 can be written in the form G = Cnℓ ⊕Cn, where ℓ ≥ 1.

Theorem [J. Olson, 1969]

D(Cnℓ ⊕ Cn) = nℓ+ n − 1.

Theorem [S., 2023]

Let ℓ, n be positive integers and denote with p the minimal prime divisor of n. Then:

βsep(Cn ℓ ⊕ Cn) = n ℓ+
n

p
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Theorem [S., 2023]

For positive integers n ≥ 2 and r denote by C r
n the direct sum Cn ⊕ · · · ⊕ Cn of r

copies of the cyclic group Cn of order n, and let p be the minimal prime divisor of n.
Then we have

βsep(C
r
n) =

{
ns, if r = 2s − 1 is odd

ns + n
p , if r = 2s is even.

Conjecture

For the direct sum C r
n of r copies of the cyclic group of order n: D(C r

n) = 1 + (n− 1)r
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Separating Noether number of finite abelian groups



Invariant theory Zero-sum sequences over finite abelian groups Some new results

Theorem [S., 2023]

For positive integers n ≥ 2 and r denote by C r
n the direct sum Cn ⊕ · · · ⊕ Cn of r

copies of the cyclic group Cn of order n, and let p be the minimal prime divisor of n.
Then we have

βsep(C
r
n) =

{
ns, if r = 2s − 1 is odd

ns + n
p , if r = 2s is even.

Conjecture

For the direct sum C r
n of r copies of the cyclic group of order n: D(C r

n) = 1 + (n− 1)r
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B. Schefler: The separating Noether number of the direct sum of several copies of
a cyclic group, https://doi.org/10.48550/arXiv.2311.09903

B. Schefler: The separating Noether number of abelian groups of rank two,
https://doi.org/10.48550/arXiv.2403.13200
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Thank you for your attention!
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