Separating Noether number of finite abelian groups

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

Groups and their actions: algebraic, geometric and combinatorial aspects June 3–7, 2024 Levico Terme

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátvás, Rényi Institute, Budapest

Outline

1 Invariant theory

2 Zero-sum sequences over finite abelian groups

3 Some new results

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátvás, Rényi Institute, Budapest

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ □臣 = つくで

Outline

1 Invariant theory

2 Zero-sum sequences over finite abelian groups

3 Some new results

・ロ・・四・・ヨ・ ・ヨ・ うらぐ

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

Some new results

Suppose that a finite group G acts on a finite dimensional \mathbb{C} -vector space V via linear transformations. Let x_1, x_2, \ldots, x_n be a basis of the dual space V^* . Then we have a G-action on the coordinate ring $\mathbb{C}[V] = \mathbb{C}[x_1, \ldots, x_n]$:

for $\sigma \in G$ and $f \in \mathbb{C}[V]$ we have: $\sigma \cdot f(x_1, x_2, ..., x_n) = f(\sigma \cdot x_1, \sigma \cdot x_2, ..., \sigma \cdot x_n)$

Schefler Barna

Eötvös Loránd University, Budapest supervisor, Domokos Mátvás, Rénvi Institute, Budapest

Suppose that a finite group G acts on a finite dimensional \mathbb{C} -vector space V via linear transformations. Let x_1, x_2, \ldots, x_n be a basis of the dual space V^* . Then we have a G-action on the coordinate ring $\mathbb{C}[V] = \mathbb{C}[x_1, \ldots, x_n]$:

for $\sigma \in G$ and $f \in \mathbb{C}[V]$ we have: $\sigma \cdot f(x_1, x_2, ..., x_n) = f(\sigma \cdot x_1, \sigma \cdot x_2, ..., \sigma \cdot x_n)$

The invariant subalgebra $\mathbb{C}[V]^G := \{f \in \mathbb{C}[V] : \sigma \cdot f = f, \text{ for } \forall \sigma \in G\}$ is generated by homogeneous polynomials of degree $\leq |G|$ by a theorem of Noether. This motivates the definition of the *Noether number*: denote by $\beta(G, V)$ the maximal degree in a minimal homogeneous generating system of the algebra $\mathbb{C}[V]^G$.

$$\beta(G) = \sup_{V} \{ \beta(G, V) | V \text{ finite dimensional} \}$$

Schefler Barna

Suppose that a finite group G acts on a finite dimensional \mathbb{C} -vector space V via linear transformations. Let x_1, x_2, \ldots, x_n be a basis of the dual space V^* . Then we have a G-action on the coordinate ring $\mathbb{C}[V] = \mathbb{C}[x_1, \ldots, x_n]$:

for $\sigma \in G$ and $f \in \mathbb{C}[V]$ we have: $\sigma \cdot f(x_1, x_2, ..., x_n) = f(\sigma \cdot x_1, \sigma \cdot x_2, ..., \sigma \cdot x_n)$

The invariant subalgebra $\mathbb{C}[V]^G := \{f \in \mathbb{C}[V] : \sigma \cdot f = f, \text{ for } \forall \sigma \in G\}$ is generated by homogeneous polynomials of degree $\leq |G|$ by a theorem of Noether. This motivates the definition of the *Noether number*: denote by $\beta(G, V)$ the maximal degree in a minimal homogeneous generating system of the algebra $\mathbb{C}[V]^G$.

$$\beta(G) = \sup_{V} \{ \beta(G, V) | V \text{ finite dimensional} \}$$

Schefler Barna

if for $v_1, v_2 \in V$ there exists $h \in \mathbb{C}[V]^G$ such that $h(v_1) \neq h(v_2)$, then there exists $f \in S$, such that $f(v_1) \neq f(v_2)$

・ロ・・四・・ヨ・ ・ヨ・ うらぐ

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátvás, Rénvi Institute, Budapest

if for $v_1, v_2 \in V$ there exists $h \in \mathbb{C}[V]^G$ such that $h(v_1) \neq h(v_2)$, then there exists $f \in S$, such that $f(v_1) \neq f(v_2)$

If G is a *finite* group, then a subset $S \subset \mathbb{C}[V]^G$ is a *separating set* if and only if:

 $Gv_1 \neq Gv_2$ implies the existence of an $f \in S$, such that $f(v_1) \neq f(v_2)$

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

if for $v_1, v_2 \in V$ there exists $h \in \mathbb{C}[V]^G$ such that $h(v_1) \neq h(v_2)$, then there exists $f \in S$, such that $f(v_1) \neq f(v_2)$

If G is a *finite* group, then a subset $S \subset \mathbb{C}[V]^G$ is a *separating set* if and only if:

 $Gv_1 \neq Gv_2$ implies the existence of an $f \in S$, such that $f(v_1) \neq f(v_2)$

Definition

Let $\beta_{sep}(G, V)$ be the minimal positive integer d such that $\mathbb{C}[V]^G$ contains a separating set whose elements are homogeneous polynomials of degree at most d. The separating Noether number $\beta_{sep}(G)$ of a finite group G is

$$\beta_{sep}(G) := \sup_{V} \{\beta_{sep}(G, V) : V \text{ finite dimensional} \}$$

Schefler Barna

if for $v_1, v_2 \in V$ there exists $h \in \mathbb{C}[V]^G$ such that $h(v_1) \neq h(v_2)$, then there exists $f \in S$, such that $f(v_1) \neq f(v_2)$

If G is a *finite* group, then a subset $S \subset \mathbb{C}[V]^G$ is a *separating set* if and only if:

 $Gv_1 \neq Gv_2$ implies the existence of an $f \in S$, such that $f(v_1) \neq f(v_2)$

Definition

Let $\beta_{sep}(G, V)$ be the minimal positive integer d such that $\mathbb{C}[V]^G$ contains a separating set whose elements are homogeneous polynomials of degree at most d. The separating Noether number $\beta_{sep}(G)$ of a finite group G is

$$\beta_{sep}(G) := \sup_{V} \{\beta_{sep}(G, V) : V \text{ finite dimensional} \}$$

Schefler Barna

Properties

- $\beta(G,V) \leq \beta(G,V+V')$
- $\ \ \, \beta(G,V_{reg})=\beta(G)$
- if $H \leq G$, then $\beta(H) \leq \beta(G)$
- $\bullet \ \beta(G) \leq |G|.$

The same facts are also true for β_{sep} .

- $\beta_{sep}(G, V) \leq \beta(G, V)$, hence
- $\beta_{sep}(G) \leq \beta(G)$

・ロ・・聞・・叫・ し・ し・

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

Zero-sum sequences over finite abelian groups

Example

Let
$$\mathbb{C}[V] = \mathbb{C}[x, y]$$
, $G := C_3 = \langle \sigma \rangle$ and $\sigma \mapsto \begin{pmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{pmatrix}$, (ω third root of unity).

くりょう 山口 マイル・トレート 日 うくの

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

Zero-sum sequences over finite abelian groups

Example

Let
$$\mathbb{C}[V] = \mathbb{C}[x, y]$$
, $G := C_3 = \langle \sigma \rangle$ and $\sigma \mapsto \begin{pmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{pmatrix}$, (ω third root of unity).
For $f(x, y) = \sum a_{ij} x^i y^j \in \mathbb{C}[x, y]$, we have $\sigma \cdot f(x, y) = \sum a_{ij} \omega^{i-j} x^i y^j$.
 $\mathbb{C}[V]^{C_3} = \mathbb{C}[x^3, y^3, xy]$, so $\beta(C_3, V) = 3$.

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ● ● ● ●

Let
$$\mathbb{C}[V] = \mathbb{C}[x, y]$$
, $G := C_3 = \langle \sigma \rangle$ and $\sigma \mapsto \begin{pmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{pmatrix}$, (ω third root of unity).
For $f(x, y) = \sum_{ij} a_{ij} x^i y^j \in \mathbb{C}[x, y]$, we have $\sigma \cdot f(x, y) = \sum_{ij} a_{ij} \omega^{i-j} x^i y^j$.
 $\mathbb{C}[V]^{C_3} = \mathbb{C}[x^3, y^3, xy]$, so $\beta(C_3, V) = 3$.
Separating set with invariants of deg at most 2? Only possibility: $S = \{xy\}$. This is not a separating set: $(1, 1)$ and $(\frac{1}{2}, 2)$ are not separated, but are in different orbits. So $\beta_{sep}(C_3, V) > 2$, and $\beta_{sep}(C_3, V) \leq \beta(C_3, V) = 3$, hence $\beta_{sep}(C_3, V) = 3$.
 $(\{x^3, y^3, xy\}$ is a separating set.)

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátvás, Rényi Institute, Budapest

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ● ● ● ●

・ロン ・四 と ・ ヨ と ・ ヨ

Example

Let
$$\mathbb{C}[V] = \mathbb{C}[x, y]$$
, $G := C_3 = \langle \sigma \rangle$ and $\sigma \mapsto \begin{pmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{pmatrix}$, (ω third root of unity).
For $f(x, y) = \sum_{ij} a_{ij} x^i y^j \in \mathbb{C}[x, y]$, we have $\sigma \cdot f(x, y) = \sum_{ij} a_{ij} \omega^{i-j} x^i y^j$.
 $\mathbb{C}[V]^{C_3} = \mathbb{C}[x^3, y^3, xy]$, so $\beta(C_3, V) = 3$.
Separating set with invariants of deg at most 2? Only possibility: $S = \{xy\}$. This is not a separating set: (1, 1) and ($\frac{1}{2}$, 2) are not separated, but are in different orbits. So $\beta_{sep}(C_3, V) > 2$, and $\beta_{sep}(C_3, V) \leq \beta(C_3, V) = 3$, hence $\beta_{sep}(C_3, V) = 3$.
($\{x^3, y^3, xy\}$ is a separating set.)

In general:

Theorem (B. Schmid, 1990)

 $\beta_{sep}(C_n) = \beta(C_n) = n$. Moreover for any noncyclic finite group $G: \beta(G) < |G|$.

Schefler Barna

Outline

1 Invariant theory

2 Zero-sum sequences over finite abelian groups

3 Some new results

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三 ろくの

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

Question

Our goal is to determine the exact value of the separating Noether number of some infinite families of abelian groups.

Schefler Barna

lötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Question

Our goal is to determine the exact value of the separating Noether number of some infinite families of abelian groups.

Fact

For a finite abelian group $\beta(G) = D(G)$

・ロト・日本・日本・日本・日本・日本

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

Let g_1, \ldots, g_k be distinct elements of the (additively written) finite abelian group G.

$$\mathcal{G}(g_1,\ldots,g_k):=\{[m_1,\ldots,m_k]\in\mathbb{Z}^k:\sum_{i=1}^km_ig_i=0\in G\}$$

is a subgroup of the additive group of \mathbb{Z}^k . The *block monoid* is defined as:

$$\mathcal{B}(g_1,\ldots,g_k):=\mathbb{N}^k\cap\mathcal{G}(g_1,\ldots,g_k)$$

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátvás, Rénvi Institute, Budapest

Let g_1, \ldots, g_k be distinct elements of the (additively written) finite abelian group G.

$$\mathcal{G}(g_1,...,g_k) := \{ [m_1,...,m_k] \in \mathbb{Z}^k : \sum_{i=1}^k m_i g_i = 0 \in G \}$$

is a subgroup of the additive group of \mathbb{Z}^k . The *block monoid* is defined as:

$$\mathcal{B}(g_1,\ldots,g_k):=\mathbb{N}^k\cap\mathcal{G}(g_1,\ldots,g_k)$$

If g_1, \ldots, g_k is an enumeration of all the elements of G, then $\mathcal{B}(G) := \mathcal{B}(g_1, \ldots, g_k)$. The *length* of an element $m = [m_1, \ldots, m_k] \in \mathcal{B}(g_1, \ldots, g_k)$ is $|m| = \sum_{i=1}^k m_i$.

÷

イロト 不得 トイヨト イヨト

Let g_1, \ldots, g_k be distinct elements of the (additively written) finite abelian group G.

$$\mathcal{G}(g_1,\ldots,g_k):=\{[m_1,\ldots,m_k]\in\mathbb{Z}^k:\sum_{i=1}^km_ig_i=0\in G\}$$

is a subgroup of the additive group of \mathbb{Z}^k . The *block monoid* is defined as:

$$\mathcal{B}(g_1,\ldots,g_k):=\mathbb{N}^k\cap\mathcal{G}(g_1,\ldots,g_k)$$

If g_1, \ldots, g_k is an enumeration of all the elements of G, then $\mathcal{B}(G) := \mathcal{B}(g_1, \ldots, g_k)$. The *length* of an element $m = [m_1, \ldots, m_k] \in \mathcal{B}(g_1, \ldots, g_k)$ is $|m| = \sum_{i=1}^k m_i$.

Remark

• we do not care about the order about in which the elements are written in $\mathcal{B}(g_1,\ldots,g_k)$

the neutral element 0 can be omitted

Schefler Barna

Definition

An element of $\mathcal{B}(g_1, \ldots, g_k)$ is an atom, if it can not be written as the sum of two non-zero elements of $\mathcal{B}(g_1, \ldots, g_k)$.

The maximal length of an atom in $\mathcal{B}(G)$ is the *Davenport constant* D(G) of the group.

Schefler Barna

Eötvös Loránd University, Budapest supervisor, Domokos Mátvás, Rénvi Institute, Budapest

Definition

An element of $\mathcal{B}(g_1, \ldots, g_k)$ is an atom, if it can not be written as the sum of two non-zero elements of $\mathcal{B}(g_1, \ldots, g_k)$.

The maximal length of an atom in $\mathcal{B}(G)$ is the *Davenport constant* D(G) of the group. Let $G = C_{n_1} \oplus C_{n_2} \oplus \cdots \oplus C_{n_r}$, where $2 \le n_r |n_{r-1}| \cdots |n_1$. Let ε_i be a genarator of C_{n_i} , and introduce the notation $\varepsilon := \sum_{i=1}^r \varepsilon_i$. Then

 $\varepsilon + \sum_{i=1}^r (n_i - 1)\varepsilon_i = 0 \in G$, hence $[1, n_1 - 1, ..., n_r - 1] \in \mathcal{B}(\varepsilon, \varepsilon_1, ..., \varepsilon_r)$ is an atom

So for any abelian group G, $\sum_{i=1}^{r} (n_i - 1) + 1 \leq \mathsf{D}(G)$.

Definition

An element of $\mathcal{B}(g_1, \ldots, g_k)$ is an atom, if it can not be written as the sum of two non-zero elements of $\mathcal{B}(g_1, \ldots, g_k)$.

The maximal length of an atom in $\mathcal{B}(G)$ is the *Davenport constant* D(G) of the group. Let $G = C_{n_1} \oplus C_{n_2} \oplus \cdots \oplus C_{n_r}$, where $2 \leq n_r |n_{r-1}| \cdots |n_1$. Let ε_i be a genarator of C_{n_i} , and introduce the notation $\varepsilon := \sum_{i=1}^r \varepsilon_i$. Then

 $\varepsilon + \sum_{i=1}^r (n_i - 1)\varepsilon_i = 0 \in G$, hence $[1, n_1 - 1, ..., n_r - 1] \in \mathcal{B}(\varepsilon, \varepsilon_1, ..., \varepsilon_r)$ is an atom

So for any abelian group G, $\sum_{i=1}^{r} (n_i - 1) + 1 \leq \mathsf{D}(G)$.

Theorem (J. Olson, 1969)

(i) If $G = C_{n_1} \oplus C_{n_2}$ is finite abelian group of rank two, then $D(G) = n_1 + n_2 - 1$ (ii) If G is a finite abelian p-group, then $D(G) = \sum_{i=1}^{r} (n_i - 1) + 1$

Schefler Barna

Let us have $G = C_2 \oplus C_2$, and denote by $\{0, a, b, c\}$ the elements of the group.

Schefler Barna

čötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

Let us have $G = C_2 \oplus C_2$, and denote by $\{0, a, b, c\}$ the elements of the group. a + a = 0, hence $m_1 = [2, 0, 0] \in \mathcal{B}(a, b, c)$ with $|m_1| = 2$ b + b = 0, hence $m_2 = [0, 2, 0] \in \mathcal{B}(a, b, c)$ with $|m_2| = 2$ c + c = 0, hence $m_3 = [0, 0, 2] \in \mathcal{B}(a, b, c)$ with $|m_3| = 2$ a + b + c = 0, hence $m_4 = [1, 1, 1] \in \mathcal{B}(a, b, c)$ with $|m_4| = 3$ Of course, the maximal length of the atoms is 3, so D(G) = 3.

Schefler Barna

ötvös Loránd University, Budapest supervisor: Domokos Mátvás, Rényi Institute, Budapest

$$\beta(G) = D(G) \longleftrightarrow$$
 max length of atoms in $\mathcal{B}(G)$
 $\beta_{sep}(G) \longleftrightarrow$?

・ロマ・白マ・山マ・山マ・

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

Some new results

$$\beta(G) = D(G) \longleftrightarrow \text{max length of atoms in } \mathcal{B}(G)$$
$$\beta_{sep}(G) \longleftrightarrow ?$$

Definition

An element of $\mathcal{B}(g_1, \ldots, g_k)$ is an atom, if it can not be written as the sum of two non-zero elements of $\mathcal{B}(g_1, \ldots, g_k)$.

Schefler Barna

Eötvös Loránd University, Budapest supervisor, Domokos Mátvás, Rénvi Institute, Budapest

Some new results

$$eta(G) = D(G) \longleftrightarrow$$
 max length of atoms in $\mathcal{B}(G)$
 $eta_{sep}(G) \longleftrightarrow$?

Definition

An element of $\mathcal{B}(g_1, \ldots, g_k)$ is an atom, if it can not be written as the sum of two non-zero elements of $\mathcal{B}(g_1, \ldots, g_k)$.

Definition

A group atom in $\mathcal{B}(g_1, \ldots, g_k)$ is such an element m, that can not be written as an integral linear combination of elements of $\mathcal{B}(g_1, \ldots, g_k)$ that have length strictly smaller than |m|.

Schefler Barna

Let $G = C_{12} \oplus C_4$, and $[11, 1, 3] \in \mathcal{B}(\varepsilon_1, \varepsilon_1 + \varepsilon_2, \varepsilon_2)$.

・ロト・日本・日本・日本・日本・日本

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

Let $G = C_{12} \oplus C_4$, and $[11, 1, 3] \in \mathcal{B}(\varepsilon_1, \varepsilon_1 + \varepsilon_2, \varepsilon_2)$. If [11, 1, 3] is the sum of two elements of the monoid, then one of them must have 0 in the second coordinate: $[m_1, 0, m_3] \in \mathcal{B}(\varepsilon_1, \varepsilon_1 + \varepsilon_2, \varepsilon_2)$, so $m_1\varepsilon_1 + m_3\varepsilon_2 = 0 \in G$. Hence $12 = \operatorname{ord}(\varepsilon_1)|m_1$ and $4 = \operatorname{ord}(\varepsilon_2)|m_3$, and then $m_1 = m_3 = 0$, since $m_1 \leq 11$, $m_3 \leq 3$. So [11, 1, 3] is an atom in $\mathcal{B}(\varepsilon_1, \varepsilon_1 + \varepsilon_2, \varepsilon_2)$.

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rénvi Institute, Budapest

Let $G = C_{12} \oplus C_4$, and $[11, 1, 3] \in \mathcal{B}(\varepsilon_1, \varepsilon_1 + \varepsilon_2, \varepsilon_2)$. If [11, 1, 3] is the sum of two elements of the monoid, then one of them must have 0 in the second coordinate: $[m_1, 0, m_3] \in \mathcal{B}(\varepsilon_1, \varepsilon_1 + \varepsilon_2, \varepsilon_2)$, so $m_1\varepsilon_1 + m_3\varepsilon_2 = 0 \in G$. Hence $12 = \operatorname{ord}(\varepsilon_1)|m_1$ and $4 = \operatorname{ord}(\varepsilon_2)|m_3$, and then $m_1 = m_3 = 0$, since $m_1 \leq 11$, $m_3 \leq 3$. So [11, 1, 3] is an atom in $\mathcal{B}(\varepsilon_1, \varepsilon_1 + \varepsilon_2, \varepsilon_2)$. It is not a group atom, since it can be written as an integral linear combination of such elements of $\mathcal{B}(\varepsilon_1, \varepsilon_1 + \varepsilon_2, \varepsilon_2)$ that have length strictly smaller than 11 + 1 + 3 = 15: [11, 1, 3] = 7[5, 7, 1] - 2[12, 0, 0] - 4[0, 12, 0] - [0, 0, 4].

Theorem [M. Domokos, 2017]

The number $\beta_{sep}(G)$ is the maximal length of a group atom in $\mathcal{B}(g_1, \ldots, g_k)$, where $\{g_1, \ldots, g_k\}$ ranges over all subsets of size $k \leq \operatorname{rank}(G) + 1$ of the abelian group G.

 $\beta(G) \longleftrightarrow$ max length of atoms in $\mathcal{B}(G)$ $\beta_{sep}(G) \longleftrightarrow$ max length of the group atoms in any of the listed block monoids

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

Outline

1 Invariant theory

2 Zero-sum sequences over finite abelian groups

3 Some new results

・ロ・・四・・田・・田・ のへぐ

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

For any abelian group G, $\sum_{i=1}^{r} (n_i - 1) + 1 \leq \mathsf{D}(G)$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

For any abelian group G, $\sum_{i=1}^{r} (n_i - 1) + 1 \leq \mathsf{D}(G)$ A finite abelian group of rank 2 can be written in the form $G = C_{n\ell} \oplus C_n$, where $\ell \geq 1$.

Theorem [J. Olson, 1969]

 $\mathsf{D}(C_{n\ell}\oplus C_n)=n\ell+n-1.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

For any abelian group G, $\sum_{i=1}^{r} (n_i - 1) + 1 \leq D(G)$ A finite abelian group of rank 2 can be written in the form $G = C_{n\ell} \oplus C_n$, where $\ell \geq 1$.

 $\mathsf{D}(C_{n\ell}\oplus C_n)=n\ell+n-1.$

Theorem [S., 2023]

Let l, n be positive integers and denote with p the minimal prime divisor of n. Then:

$$\beta_{sep}(C_{n\,\ell}\oplus C_n)=n\,\ell+\frac{n}{p}$$

Schefler Barna

otvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapes

Theorem [S., 2023]

For positive integers $n \ge 2$ and r denote by C_n^r the direct sum $C_n \oplus \cdots \oplus C_n$ of r copies of the cyclic group C_n of order n, and let p be the minimal prime divisor of n. Then we have

$$eta_{sep}(C_n^r) = egin{cases} ns, & ext{if } r = 2s - 1 ext{ is odd} \\ ns + rac{n}{p}, & ext{if } r = 2s ext{ is even}. \end{cases}$$

・ロ・・西・・ヨ・・ヨ・ ヨー うへぐ

Schefler Barna

čötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

Theorem [S., 2023]

For positive integers $n \ge 2$ and r denote by C_n^r the direct sum $C_n \oplus \cdots \oplus C_n$ of r copies of the cyclic group C_n of order n, and let p be the minimal prime divisor of n. Then we have

$$eta_{sep}(C_n^r) = egin{cases} ns, & ext{if } r = 2s-1 ext{ is odd} \ ns + rac{n}{p}, & ext{if } r = 2s ext{ is even}. \end{cases}$$

Conjecture

For the direct sum C_n^r of r copies of the cyclic group of order n: $D(C_n^r) = 1 + (n-1)r$

Schefler Barna

vös Loránd University, Budapest supervisor: Domokos Mátvás, Rényi Institute, Budapest

- B. Schefler: The separating Noether number of the direct sum of several copies of a cyclic group, https://doi.org/10.48550/arXiv.2311.09903
- B. Schefler: The separating Noether number of abelian groups of rank two, https://doi.org/10.48550/arXiv.2403.13200

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

Thank you for your attention!

Schefler Barna

čötvös Loránd University, Budapest supervisor: Domokos Mátvás, Rénvi Institute, Budapest